
ASIPATH: A SIMPLE PATH MINING ALGORITHM

Ayhan Demiriz∗

Department of Industrial Engineering,
Sakarya University, 54187 Sakarya, Turkey

Email:demira@rpi.edu

Abstract

A SImple yet very efficient PATH mining algorithm (ASI-
PATH) is introduced in this paper to analyze the click
stream data. As in the case of the preceding sequence min-
ing algorithm (webSPADE), ASIPATH requires only one
full scan of the data and several partial scans. In parallel al-
gorithm design, it is very common to parallelize a serial al-
gorithm, but ASIPATH is designed for multi-CPU environ-
ment in the first place without a preceding serial version.
Due to the choice of the application environment i.e. Win-
dows, ASIPATH is not designed as a distributed algorithm
but can easily be modified for a distributed environment.
In contrast with many existing path mining algorithms, it is
not based on a tree-like data structure and search method.
By using very efficient join operations, the parallelization
of the algorithm is simplified considerably.

Keywords: Path Mining, Traversal Pattern Mining,
Web Logs

1 Introduction

One of the most common application areas of sequence
mining is the analysis of click stream data. Many suc-
cessful applications exist [15, 11, 10, 1] including our web-
SPADE algorithm [3, 4]. By design, sequence mining algo-
rithms find all possible combinations of frequent item sets
under temporal, as well as non-temporal, and minimum
support constraints. Thus, a sequence mining algorithm
will find a rule related to two pages that are not necessarily
linked directly (no hypertext link between these two pages).
But, in commercial applications, many reports such as attri-
tion reports might require the next page click analysis (web
traversal path analysis). Thus we might have to incorporate
site structure to filter the rules found by sequence mining
algorithms. It is not always feasible to have a constant web
site structure to report on. Most of the commercial web
sites are either dynamic or frequently changed in nature.

A simple yet very efficient algorithm, ASIPATH, is
introduced in this paper to find the frequent paths that ex-
ist in click stream data. Although ASIPATH inherits some
design properties from our earlier sequence mining appli-
cation webSPADE [3, 4], it is a totally new approach to

∗This paper was written while the author was an employee of Verizon
Communications.

path mining. From the beginning, the algorithm has been
designed in a parallel mode.

Borrowing the notation from [1] and adapting it for
path mining on click stream data, letI = {i1, i2, . . . , in}
be a set of items (pages).X ⊆ I is called anitemset and
|X| is thesize of X. A pathp = (p1, p2, . . . , pm) is an
ordered list of pages wherepi ∈ I, i ∈ {1, . . . ,m} and
the pagep1 is visited just before the pagep2, the pagep2

is visited just before the pagep3 and so on. The ordered
list implicitly requires the existence of a hypertext link be-
tween consecutive pages, but this link could be broken by
the web users if they type aurl instead of using the hyper-
text links that exist in the document. In addition, backward
movement is allowed in our analysis. The size,m, of a path
is the number of pages (items) in the path, i.e.|p|.

Note that click stream data is organized by user-
sessions. A user can only request (view) a single page at
any given time. This results in a fundamental difference be-
tween click stream analysis and standard sequence mining.
In standard sequence mining, a sequence might be com-
posed of severalitemsets that have one or more items in
them. Due to this difference, the length,l, of a path is equal
to the size of that particular path i.e.|p|. The setFl repre-
sentsl-length frequent paths. Particularly,F1 andF2 rep-
resent the frequent pages and the frequent links (adjacent
pages) respectively.

A pathpa = (a1, a2, . . . , an) is contained in another
pathpb = (b1, b2, . . . , bm) if there exist integers1 ≤ i1 <

i2 < . . . < in ≤ m such thata1 = bi1
, a2 = bi2

, . . . , an =
bin

. If path pa is contained in pathpb, then we callpa a
subpath ofpb.

A database,D, is a set of tuples (sid,time,pid), where
sid is web browser session identifier,time is the page re-
quest time, andpid is the requested page. Tuples inD are
sorted by bothsid and tid and then they are given to the
algorithm to be analyzed. The databaseD is initially kept
fully in the memory. time is solely used to sort the data.
Instead oftime, page request index (order) that increments
by one is used within the algorithm. The purpose of using
the index is to enable the join operation to find the consec-
utive page requests. Note that the join operation is done
at the memory level. It is not in the context of a relational
database operator in our implementation.

The main contribution of this paper is to find the
frequent paths in a recursive way by joining them with
F2. This is a significant difference from Apriori-like algo-

1

rithms, because they need to scan all the data (full scan) at
each step to generate the candidate listsC. Actually, there
is no need for generating candidate lists in our approach
except to speed up the algorithm. The recursive nature of
the algorithm might imply a depth-first or a breadth-first
search-like mechanism at the first glance. But our parallel
implementation avoids any explicit search method by us-
ing a First-In-First-Out (FIFO) queue with multiple servers.
The server here is used the same way as in the context of
queueing theory. In other words, instead of joiningFk−1

with itself, it is easier to parallelize the algorithm by join-
ing Fk−1 with already computedF2. In this case, there is
no need to wait for the computation of allFk−1 in order to
computeFk. Therefore, parallelization of the algorithm in
a distributed memory and multi-CPU environment is very
straightforward.

Another contribution of this paper is the discussion on
three different ways of enumeratingF2. First two methods
are based on join operations onF1. The last one requires
an additional database scan, however it is not based on join
operation.

The rest of the paper is organized as follows. Prob-
lem definition and motivation behind ASIPATH are given
in the next section. Some of the well-known concepts such
as support level are used in a slightly different manner in
this paper to address the issues faced in click stream data
analysis. Section 2 also emphasizes on giving the rationale
behind these modifications. The detail explanation of ASI-
PATH is given in Section 3. We report the performance of
ASIPATH on real click stream data in Section 4 with sev-
eral ways to enhance the algorithmic performance. It then
follows with a conclusion in Section 5.

2 Motivation and Problem Definition

The structure of a web site can be represented by an un-
weighted graph [8]. A web site can be considered as a set
of documents (pages) connected via hypertext links. Each
document corresponds to a vertex and each hypertext link
corresponds to an arc within the graph representation. Basi-
cally, each hypertext link (arc) connects two different doc-
uments (vertices). Since there is no tangible cost associated
with the movement from one document to another, the un-
derlying graph can be considered unweighted. A consecu-
tive sequence of page views can be considered a traversal
pattern, since each pair of consecutive arcs connects two
vertices.

Using association mining to analyze the click stream
data results in a very large number of associations among
the pages. Since association mining does not incorporate
web site structure or the page request (view) times, result-
ing rules will not reflect the user experience. Thus asso-
ciation rules might be misleading and incomplete from an
analysis perspective.

The concept of path mining in this paper is used the
same meaning as traversal pattern discovery. Thus we de-
fine path mining as follows. Given a collection of sessions

(transactions) which are paths taken by users and parts of
the graph that represents the web site, all subpaths that have
sufficient number of frequencies are found. Thesufficient
numbercorresponds to support level in standard associa-
tion and sequence mining. In accordance with the termi-
nology of standard association mining, frequent paths are
also called aslargepaths.

Sequence mining addresses the same problem, but in
a different manner. The difference is that there is no con-
dition on the next page in sequence mining. This means
that two consecutive pages in a sequence are not necessarily
connected by a hypertext link. There could be a gap within
a sequence in terms of hypertext links. Depending on the
existence of such a gap, a sequence may not represent a
subgraph. In other words, there is no existing arc between
two consecutive items (vertices) in a sequence. Analyzing
click stream data using sequence mining is addressed in
[11] as well as in the preceding work [3, 4] of this paper.

As pointed out earlier, path mining might be a better
choice as an analysis tool compared to sequence mining.
As long as there is a need for attrition-report-type analy-
sis, path mining would be a preferred tool. However, se-
quence mining has its own merits such as the ability to
catch flow from one application to another. Speaking of
applications, commercial web sites are composed of
several applications e.g. Bill View, Bill Pay and Registra-
tion. Usually the first page in any given application gets the
highest hits and the last page (e.g., Thank-you and Confir-
mation pages) gets the least hits. This is so called a funnel
type shape in terms of traffic. So, if an analysis is done for
the sessions that have the first page in them, the resulting
click stream data will be very sparse. However, if the same
analysis is done for the last page, the resulting click stream
data will be very dense, since the sessions are conditioned
to include the successful visits to the last page. In this case,
support level will not be able to prune the rule space and
number of rules will be very high. For instance, underly-
ing sequence mining algorithm could end up finding 800K
sequences for merely 40K hits of click stream data.

2.1 Related Work

Mining traversal patterns was originally discussed in [2].
The problem studied in [2] is to findmaximal forward ref-
erences. First, the raw log files are analyzed in [2] to
find maximal forward references and then, the frequent
traversal patterns (large reference sequences) are found by
analyzing maximal forward references. Basically, max-
imal forward references correspond to the longest paths
in a session without visiting a previously visited page
(backward reference). To illustrate maximal forward ref-
erences, assume that following traversal path is used in a
session{A,B,C,D,C,B,E,G,H,G,W,A,O,U,O, V }
- adapted from [2]. Maximal forward references for this
session are{ABCD,ABEGH,ABEGW,AOU,AOV }.

Finding maximal forward references is itself an im-
portant step to consider, but the algorithms for finding

the frequent traversal patterns is more related to our work
in this paper. Authors propose two different algorithms
to analyze maximal forward references in [2] namely
Full Scan (FS) andSelective Scan (SS). The al-
gorithm FS is based on authors’ earlier work DHP [9] that
utilizes hashing and pruning. Although the algorithm FS
trims the transaction database in each level, it is still re-
quired to scan the transaction database in each pass. As an
alternative to FS, SS is proposed in [2] to avoid unneces-
sary scans in each level by properly utilizing the candidate
lists.

The algorithm FS also utilizes join operation in each
level to generate candidate lists. In other words,Ck can be
generated by joiningFk−1 with itself, denoted byFk−1 ∗
Fk−1. Note that the proposed algorithm in this work, ASI-
PATH, generatesFk by the join operationFk−1 ∗ F2. This
is one of the fundamental differences between ASIPATH
and FS proposed in [2]. Another difference is that, after
generatingCk, the algorithm FS requires a (trimmed) trans-
action database scan to determineFk. Join operation in FS
is done on sequences that have identical parts after drop-
ping the first item in one sequence and the last item in the
other sequence.

A web mining tool, SpeedTracer, is introduced in
[13]. SpeedTracer is a stand-alone web mining tool that
first sessionizes the raw web log data and uses the algo-
rithms introduced in [2] to analyze the data. In addition to
finding the frequent traversal paths, SpeedTracer also pro-
vides some standard reports related to user session charac-
teristics, frequent paths and page groups. A page group can
essentially be defined as a set of pages that are frequently
visited in user sessions. It is a straight implementation of
the association mining in the context of web mining.

As explained in [8], transactions may get corrupted
(in the context of maximal forward references [2]) by ir-
relevant page accesses during the user sessions. Such
cases can be considered noisy transactions. Thus finding
maximal forward references might lead to unexpected out-
comes, such as missing the main paths along the web struc-
ture. At the end, this results in misleading frequent traver-
sal paths.

To overcome such cases, authors approach the prob-
lem of finding traversal paths from a graph theory perspec-
tive in [8]. The proposed algorithm in [8] finds the asso-
ciation rules based on the graph structure and takes into
account the notion of subpath containment. The resulting
algorithm is very similar to the Apriori algorithm with the
difference of eliminating the large item candidates that vi-
olate the graph structure of the web site. Special data struc-
tures are used in [8] to accommodate an efficient algorithm
other than the original data structures used in Apriori (hash-
tree and hash-table). By using the algorithm proposed in
[8], authors also introduce a web prefetching system in [7].

Suffix trees are extensively used for the problem of
string search and combinatorial pattern matching. In real-
ity, a string is nothing but an ordered list (sequence) of char-
acters that follow each other. Matching a substring within

Table 1. Sample Problem: Click Stream Data

SID Click Stream
1 A, D, F
2 A, C, D
3 A, B, D, F, B, D
4 A, C, F ,C
5 A, C, B, D
6 A, D, F

a large string is primarily used for counting substrings. In
this case, a substring is provided to the search algorithm.
However, discovering the substrings is a totally different
task from the pattern matching task. A naı̈ve sequence min-
ing algorithm would first find all the substrings and then
counts them, utilizing a string search algorithm such as suf-
fix trees. A dynamic suffix tree is proposed in [12] in the
context of incremental sequence mining when the underly-
ing database is updated (changed.) It was shown that dy-
namic suffix trees run in time independent of database size
for small updates and large databases. Again, the problem
in [12] assumes that all the sequences are found in the first
place, then a dynamic suffix tree is used to perform an in-
cremental discovery when the database is updated.

2.2 Revisiting Definitions: Sample Problem

In standard sequence mining, a transaction identifier (tid)
is used to distinguish the itemsets (X) from each other for
a given customer identifier (cid). When click stream data
is analyzed, we can also incorporate a user identifier. An-
alyzing repeating customers is an important topic in web
mining. This is crucial in the case of marketing oriented
web sites such asamazon.com. When web sites involve
recurring activities such as bill view and bill pay, analyzing
the repeating customers will not reveal unknown patterns.
Thus analysis at session level is acceptable for our purpose.
Nevertheless, ASIPATH can also be used for analyzing the
repeating user data with some modifications, but it is out of
scope of this paper.

Since the problem domain in this paper is click stream
data at session level, the definition of thesupport levelis
different from the one at transaction level which is used
generally in association and sequence mining [15, 10, 1].
Following the same definition as in [3, 4], we define the
support of a path,σ, as the number of requests out of all the
page requests. Minimum support in this context becomes
the number of requests that a page should receive out of the
total requests in databaseD to be considered as a frequent
page. The frequent pages then form the set (F1). For ex-
ample, if there are 1M total hits in databaseD regardless
of the number of sessions, then a page should have at least
1000 requests to be considered as a frequent page at 0.1%
support level. Similarly, a path (e.g.A → B → C) should
have at least a frequency of 1000 for the same reason to

be considered as a frequent path. If a certain path is taken
twice in a session, it will be counted twice as opposed to
once in a transaction based consideration.

To illustrate the algorithm and understand the termi-
nology better, a sample problem is given in Table 1. SID
stands for the Session IDentifier. Notice that each session
is a collection of pages, ordered by their request times. For
the simplicity, request times are not included in this sample
data. As mentioned above, the order (index) of the click
stream data is enough to perform the path mining. Never-
theless, we can also use the index as the time stamp in our
sample data.

There are twenty three requests in total from all the
six sessions. Assuming that the minimum support is two,
then the frequent pages (F1) are summarized in Table 2. In
this case, the support level is equal to2

23
≈ 9%. Actually,

all the distinct pages in this sample problem end up being
as the frequent pages. The next step in our path mining
process is to enumerate the frequent two-page paths (F2).
Notice that we can enumerate two-page paths by joiningF1

with itself i.e. F1 ∗ F1. There are two constraints for the
join operation that the requests should be

• in the same session

• one-click apart.

To illustrate the join operation, consider joining the
sets Page D and Page F (see Table 2) to generate the
set D→F. Notice that D and F pairs{(1:2)(1:3),(3:3)
(3:4),(6:2)(6:3)} satisfy the above constraints. The result-
ing set can be found in Table 3. By using an efficient join
operation, we can also figure out in the same join operation
whether F→D is also a frequent two-page path or not. Ob-
viously, F→D is not a frequent path for this sample prob-
lem. Another observation from the sample problem is that
the path B→D is taken twice in Session 3. Thus the set
B→D has two records from Session 3.

The solution for the enumerating longer frequent
paths is a little bit different from enumeratingF2. As men-
tioned previously, it is sufficient to joinFk−1 with F2 to
generateFk. For example, if we join the sets A→D and
D→F, the resulting set will be A→D→F as seen in Table
3.

We briefly illustrate the concept of path mining in this
subsection around a sample click-stream data. Implemen-
tation of this concept has some challenging issues. We ex-
plain the implementation of the algorithm ASIPATH in the
next section.

3 Algorithm: Details and Comparisons

Parallel programs are usually developed by modifying their
serial versions. In terms of parallelization of the serial pro-
grams, the memory type of the computer system is an im-
portant factor to consider when designing the algorithm.
Since path mining is very similar to sequence mining in

nature, it is important to understand the algorithmic chal-
lenges of sequence mining in parallel environments.

Sequence mining can be considered as an irregular
tree search algorithm [16], with each node corresponding
to an equivalence class. According to argument in [16],
parallelization of the sequence mining can be achieved ei-
ther by data or task parallelism. In data parallelism, proces-
sors work on distinct partitions of the database but process
the global tree structure concurrently. Task parallelism,on
the other hand, requires each processor to have a separate
copy of the database and run on different branches of the
global tree. Experiments in [16] show that task parallelism
is more favorable than data parallelism, with the best task
parallelism approach using recursive dynamic load balanc-
ing [16].

A parallel version of the tree projection algorithm is
proposed in [5]. Each node in the projection tree corre-
sponds tok-itemset. The projection tree grows in a breadth-
first manner. Data and task parallelism are compared again
in [5]. Similar to the results in [16], task parallelism results
are more favorable in terms of work load and computation
time. An extension to [5] is introduced in [6] by imple-
menting a dynamic load balancing scheme. The dynamic
load balancing scheme in [6] performs similar to or better
than the static load balancing schemes used in [5].

Algorithm 3.1 (ASIPATH).

Given minsupport and databaseD
F1 = {Frequent items}
F2 = {Frequent item-pairs (two-item path)}
Q = F2

Enumerate − Freq − Paths(Q);

A high level pseudo-code of the algorithm ASIPATH
is given in Algorithm 3.1. Steps in this pseudo-code are
similar to the solution studied in Section 2.2 for the sample
problem. EnumeratingF2 is the most CPU intense step in
ASIPATH as in the case of webSPADE [4]. ASIPATH runs
on a single machine with multiple CPUs utilizing a shared-
memory, due to the choice of the application environment.
ASIPATH does not require utilization of any search method
such as breadth-first and depth-first. It utilizes a job queue
in a multi-threaded environment in enumerating the three-
page or longer frequent paths. This particular queue re-
sembles a single line First-in-First-Out Multi Server queue
from the queueing theory. Thus, it is not necessary that
all k-length paths will be found before finding(k + 1)-
length paths. It is very likely that a join operation involving
a (k + 1)-length path might be performed before another
join operation involving ak-length path. In other words,
parallelization of the algorithm is considerably simplified.
The details of the functionEnumerate-Freq-Paths is
given below.

Table 2. Frequent Pages (F1)

A
SID Index
1 1
2 1
3 1
4 1
5 1
6 1

B
SID Index
3 2
3 5
5 3

C
SID Index
2 2
4 2
4 4
5 2

D
SID Index
1 2
2 3
3 3
3 6
5 4
6 2

F
SID Index
1 3
3 4
4 3
6 3

Table 3. Frequent Paths (F2 andF3)

A→C
SID Index
2 2
4 2
5 2

A→D
SID Index
1 2
6 2

B→D
SID Index
3 3
3 6
5 4

D→F
SID Index
1 3
3 4
6 3

A→D→F
SID Index
1 3
6 3

Algorithm 3.2 (Enumerate-Freq-Paths).

Given Set S
while S is not empty do:
print the first path (item-list)
LetA1 be the first item-list in S
for all item-pairs (Pi) in F2 do:
if last item of A1 is equal to the first item
of Pi then:
R = A1

∨
Pi;

L(R) = L(A1) ∩ L(Pi); Join operation
if σ(R) ≥ min support then
S.pushback(R);

endif
endif
S.remove(A1);

endfor
endwhile

The functionEnumerate-Freq-Paths could be
written in a recursive way to utilize the breadth-first or
depth-first search methods, but we intentionally avoid this
approach to leave the load balancing to the operating sys-
tem and to prevent unnecessary housekeeping steps. In this
case, a thread is created with the first item in the set (queue)
provided that the number of threads is lower than the num-
ber of maximum allowable threads i.e. a parameter. The
length of the frequent paths is also limited at ten for ASI-
PATH as in webSPADE [4].

The basic idea in ASIPATH is to joinFk−1 with F2,
i.e. Fk−1 ∗ F2, to enumerateFk for k ≥ 3. ASIPATH does
not require the utilization of the web site structure in the
discovery process. A limited usage of ASIPATH has been
in production since May, 2003 to analyze the web logs from

Verizon.com. Interested readers can see some screen shots
from the application in [4] related to “Page Based Anal-
ysis” part. Note that path mining is only mentioned as a
tool in [4] without any algorithmic details. The limitation
on the length of the frequent paths comes handy when us-
ing relational tables efficiently in displaying results in our
application.

In general there are two types of join operation in
ASIPATH. The first one is for enumeratingF2 and the other
is for longer paths. Although enumeratingF2 is done in
a parallel mode by using two-way joins in a single scan,
this step is the most time consuming due to the exhaustive
search requirement. Notice that the merit of the using join
operation in path mining as well as in sequence mining is to
minimize the memory requirements as observed in [1]. In
the next section, we will introduce two different schemes
to avoid the exhaustive search in this step.

4 Alternatives to Enumerate F2: Experi-
mental Section

In this section, we introduce two different ways to enhance
the performance of the algorithm ASIPATH. The baseline
algorithm ASIPATH, as introduced in previous sections, is
called “Full Join” to differentiate from the enhancements
studied in this section. The first enhancement is called
“Smart Join” and is based on a scheme to do selective joins.

In this way of enumeratingF2, the algorithm tracks
the page couplings during the database access. There is no
counting process involved, the algorithm only checks dur-
ing the database scan whether a page comes after another
page or not. After completing the database access and find-

Figure 1. Run Times vs. Number of Hits

ing F1, depending on the resulting page couplings join op-
eration is conducted onF1 with itself. Notice that some
of the page couplings might be two-way (e.g. A→B and
B→A) because of backward movement and some of them
only one-way (e.g. only A→B, but not B→A). Although
we devise two different join operations for these cases, our
initial experiments show that there is no significant perfor-
mance changes when we use one-way join operation for the
one-way coupling instead of using two-way join that enu-
merates for an unnecessary path. This is because both join
operations are based on an efficient one time scan.

The second way of enhancing ASIPATH is called
“Double Scan”, as the name suggests, it is based on scan-
ning the database an additional time to completely avoid
the join operation for enumeratingF2. The crucial step in
“Double Scan” is to use special data structures to count the
page couplings efficiently. As in the case of Apriori-like
algorithms, double scan first generates a candidate list in
the first database scan and then it counts the two-item paths
in the second database scan. Finally, the frequent two-item
paths are determined based on the support level.

We compare the baseline algorithm and other two
enhancements on click stream data collected from Veri-
zon.com during month of August, 2002. To show the scala-
bility of the algorithm, the click stream data have been used
in different time periods. First, experiments are conducted
on daily click stream data in other words 31 different data
chunks. We then use 3-day long data chunks i.e. 10 differ-
ent measurements. We use weekly, 10-day, and bi-weekly
data as well. At the end, we are able to observe the algo-
rithm on 50 different data chunks. Experiments are con-
ducted on a server that has 8 CPUs running at 700 MHz
clock speed with 4GB of total memory. A fixed (0.1%)
support level is used for all the experiments. Figure 1 de-
picts the runtimes from August 2002 data by changing the
data size. Times are reported in seconds. Number of hits
are reported in millions.

Using the smart join approach improves ASIPATH a

Figure 2. Runtime Improvements

little bit but not significantly. To investigate the improve-
ment levels at different data sizes, Figure 2 is drawn. It
seems smart join shows 40% of improvement for the small
size data (i.e. daily). When the data size is increased,
its performance diminishes. A logical explanation for this
phenomenon is that for the large click stream data it is high
likely that there will be more page couplings. Then algo-
rithm behaves in a way that it gets closer to the exhaustive
search method for enumeratingF2.

On the other hand, double scan shows well over 80%
of improvement constantly for all the data sizes. It also
scales very well for the large data. We also observe that
using additional scan to enumerateF2 is very crucial to
improve the scalability. Furthermore the size of the data
gets smaller by increasing length of paths, the join opera-
tion can safely be used for enumerating frequent paths that
are longer than two.

5 Conclusion

A path mining algorithm, ASIPATH, based on join oper-
ations is introduced in this paper. The original algorithm
requires only one database scan but several intermediate
partial scans. We also discussed two enhanced versions of
this algorithm in this paper. Based on the experiments us-
ing click stream data from Verizon.com, we noticed a sig-
nificant improvement in terms of run time of the algorithm
when the second database scan is used for enumeratingF2.

The content of this paper is limited to the introduc-
tion of the idea of using join operation in path mining. Al-
though the existing algorithms are designed for slightly dif-
ferent problems, ASIPATH should be compared with them
in terms of algorithmic performance. Moreover, we need
to study the similarities and the differences between con-
strained sequence mining [14] and path mining. Path min-
ing can be considered as a special case of sequence mining
under constraints of minimum and maximum gaps equal to
1 (see [14]).

Experiments in this paper showed that ASIPATH is
very scalable. By developing a user friendly front-end,
ASIPATH can easily be utilized in analysis of the click
stream data to answer various business questions stemming
from the issues related to a commercial web site.

Acknowledgments

I would like to thank to Dr. Mohammed J. Zaki for
his comments on an early draft of this paper.

References

[1] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequen-
tial pattern mining using a bitmap representation. In
David Hand, Daniel Keim, and Raymond Ng, editors,
Proceedings of the Eighth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining. ACM Press, 2002. Edmonton, CANADA.

[2] M.-S. Chen, J.-S.Park, and P. S. Yu. Efficient data
mining for path traversal patterns.IEEE Transactions
on Knowledge and Data Engineering, 10(2):209–
221, 1998.

[3] A. Demiriz. webspade: A parallel sequence mining
algorithm to analyze web log data. InProceedings of
The Second IEEE International Conference on Data
Mining (ICDM 2002), pages 755–758. IEEE Com-
puter Society, 2002. Maebashi City, Japan.

[4] A. Demiriz. On analyzing web log data: A par-
allel sequence mining algorithm. In Mehmed
Kantardzic and Jozef Zurada, editors,New Gen-
eration of Data Mining Applications (To be
published). IEEE-Wiley, 2003. Available at
http://www.rpi.edu/∼demira/webspadebkchap.pdf.

[5] V. Guralnik, N. Garg, and G. Karypis. Parallel
tree projection algorithm for sequence mining. In
R. Sakellariou, J. Keane, J. Gurd, and L. Freeman,
editors,Proceedings of Seventh European Conference
on Parallel Computing (Euro-Par), pages 310–320.
Springer, 2001.

[6] V. Guralnik and G. Karypis. Dynamic load balancing
algorithms for sequence mining. Technical Report 00-
056, Department of Computer Science, University of
Minnesota, 2001.

[7] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A
data mining algorithm for generalized web prefetch-
ing. IEEE Transactions on Knowledge and Data En-
gineering,, 15(5), September/October 2003.

[8] A. Nanopoulos and Y. Manolopoulos. Finding gen-
eralized path patterns for web log data mining. In
J. Stuller, J. Pokorny, B. Thalheim, and Y. Masunaga,

editors,Proceedings of Fourth East-European Con-
ference on Advanced Databases and Information Sys-
tems, pages 215–228. Springer, 2000. Prague, Czech
Republic.

[9] J.-S. Park, M.-S. Chen, and P. S. Yu. An effective
hash based algorithm for mining association rules. In
Michael J. Carey and Donovan A. Schneider, editors,
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 175–186,
San Jose, California, 1995.

[10] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal, and M.-
C. Hsu. Prefixspan: Mining sequential patterns ef-
ficiently by prefix-projected pattern growth. InPro-
ceedings of International Conference on Data Engi-
neering (ICDE’01), 2001. Germany.

[11] J. R. Punin, M. S. Krishnamoorthy, and M. J. Zaki.
Logml: Log markup language for web usage mining.
In Ron Kohavi, Brij M. Masand, Myra Spiliopoulou,
and Jaideep Srivastava, editors,WEBKDD 2001-
Mining Web Log Data Accross All Customers Touch
Points, San Francisco, CA, USA, pages 88–112.
Springer, 2002.

[12] K. Wang. Discovering patterns from large and dy-
namic sequential data.Journal of Intelligent Infor-
mation Systems, 9(1):33–56, 1997.

[13] K.-L. Wu, P. S. Yu, and A. Ballman. Speedtracer: A
web usage mining and analysis tool.IBM Systems
Journal, 37(1):89–105, 1998.

[14] M. J. Zaki. Sequence mining in categorical domains:
Incorporating constraints. InProceedings of the 9th
International Conference on Information and Knowl-
edge Management, pages 422–429, Washington, DC,
2000.

[15] M. J. Zaki. SPADE: An efficient algorithm for min-
ing frequent sequences.Machine Learning Journal,
42(1/2):31–60, Jan/Feb 2001. Special issue on Unsu-
pervised Learning (D. Fisher, editor.).

[16] M. J. Zaki. Parallel sequence mining on shared-
memory machines. Journal of Parallel and Dis-
tributed Computing,, 61(3):401–426, March 2001.
Special issue on High Performance Data Mining (V.
Kumar, S. Ranka and V. Singh, editors.).

