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Abstract: 

Call centers are complex contact centers to handle large volume of inbound, outbound or both 

types of calls depending on the business purpose. Call centers assume the role of the primary 

contact medium for many companies from a wide range of industries with their customers or 

clients. Despite of being seen traditionally as adding cost to the companies’ bottom lines, call 

centers are now viewed by many companies to turn a service request into an opportunity to 

sell additional products and services. This sales attempt is called cross-selling.  The 

opportunity to generate profit from an existing customer-base is a key factor for a successful 

call center. This paper introduces a framework for balancing cross-selling and service 

activities in a call center setup from a queuing science point of view. The main goal of this 

study is to introduce a framework to maximize a call center’s performance without degrading 

the service quality. Our framework is based on the usage of real-time queue characteristics, 

customer profile information and server-skill set information from a cross-sell point of view.  

Keywords: call center; cross-selling; contact center; queuing theory; skill-based routing, call 

routing. 



1. Introduction 

Call centers also known as customer service centers are becoming more prevalent means to 

handle customer service request in a variety industries ranging from financial service to retail 

companies. Call center industry is expanding worldwide in rapid face in terms of workforce 

and economic. For example, it is estimated that 3% of workforce both in the UK and USA is 

employed by call center industry with 20% growth rate (Koole and Mandelbaum, 2001). In 

addition, outsourcing activities in developed countries create significant amount of jobs in 

developing countries like India.  

Queuing theory concerns with the mathematical explanations and analysis of stochastic 

systems from congestion point of view. On the other hand, as mentioned in (Brown et al., 

2005), queuing science deals with to validate and calibrate queuing-theoretic models by 

extensive statistical data analysis on real systems.  Thus, queuing science can be considered as 

the empirical and practical answer to the operational and managerial problems in the call 

center industry. Nevertheless, many design decisions are made based on the theoretical results 

of the queuing theory.  

Johnson and Seymour studied a retail bank before and after a cross-sell program initiated 

across its branches. Their study is the one of earliest analysis of cross-sell efforts in traditional 

business environment (Johnson and Seymour, 1985). Similar to their work, Akşin and Harker 

studied identifying some of the effects of increased sales activities on customer service in 

phone centers (Akşin and Harker, 1999).  The primary goal in this particular study was to 

ascertain possible effects of cross-sell effort under different organizational scenarios. Akşin 

and Harker applied the framework proposed in their study to a retail bank call center. For a 

successful entering customer, the expected revenue is deterministic but dependent on the 

service type.   They showed that appropriate managerial actions can ameliorate the congestive 

effects of cross-selling (Akşin and Harker, 1999). 



(Gans et al., 2003) provides a tutorial to the operation and management issues in telephone 

centers. Koole and Mandelbaum prepared a survey as an introduction to the queuing models 

of call centers (Koole and Mandelbaum, 2001). Güneş and Akşin segmented customer base 

into high and low value customers and analyzed cross-selling attempts to one or both 

customer segments (Güneş and Akşin, 2004). Örmeci and Akşin modeled revenue generation 

and congestion in a call center as a dynamic framework (Örmeci and Akşin, 2005). We model 

our cross-selling problem as a queuing system for optimal control. 

In this paper we introduce a framework for balancing cross-selling and service activities in a 

call center setup from a queuing science point of view. The main goal of this study is to 

introduce a framework to maximize a call center’s performance without degrading the service 

quality. Our framework is based on the usage of real-time queue characteristics, customer 

profile information and server-skill set information from a cross-sell point of view. In 

addition, we propose a M/M/1 based solution for the problem of finding the optimum 

threshold (p*) for the cross-selling in the presence of regular service. For this purpose, we 

device a threshold function w.r.t. the number of customers in the call center system. We 

present results from this model under various scenarios such as traffic intensity, likelihood of 

purchasing, and initial cross-selling threshold. We compare the results of this model with the 

results of the full-policy model proposed in (Byers and So, 2007) under equivalent parameters 

experimental setup.  

In the remaining of the paper, we give a short explanation of the call center environment and 

discuss its major components in Section 2. We then give a summary of common theoretic 

queuing models in Section 3. Section 4 introduces our framework proposed in this paper. We 

develop practical implementation of our framework as an M/M/1 model in Section 5. Section 

6 reports our experimental results on M/M/1 model and its comparisons with baseline models. 

We also report some results from our implementation of the full-policy model introduced in 



(Byers and So, 2007). We then conclude our paper with a conclusion and the future work 

section.    

2. What is a Call Center? 

Call centers are modern service networks in which customer service representatives (CSRs) 

provide services to customers via telephones and computers.  Call centers can be categorized 

according to their functionalities (help desk, emergency, tele-marketing, information 

providers, etc.), agent characteristics (low-skilled, high-skilled etc.), their sizes (number of 

agent seats) and more (Koole and Mandelbaum, (2002)). A main characteristic of a call center 

is whether it handles inbound or outbound traffic. Our focus here is on inbound (incoming) 

call centers where the calls are initiated by the customers. 

Call (contact) centers are technology-intensive operations. However, 70% or more of their 

operating costs are stem from human resources (Koole and Mandelbaum, (2002)). Well-run 

call centers maximize the expected operation profit without sacrificing the service quality. 

Successful call centers adhere to the agent efficiency through well balanced call routing based 

on queue characteristics (service quality) and customer profile information. Call centers can 

be viewed, naturally and usefully, as queuing systems see Figure 1.. In a queuing model of a 

call center, the customers are callers, servers (resources) are telephone agents (operators) or 

communication equipment, and tele-queues consist of callers that await service by a system 

resource. Our model is based on a single waiting line, multi-server and finite queuing model 

that works according to FCFS discipline.  

 

Figure 1 

 

Modern call center is often more complicated queuing networks. One of the early 

breakthroughs in call center technology is the PABX's (Private Automatic Branch Exchanges, 



or simply PBX), the telephone exchanges within companies. A PBX connects, the public 

telephone network to telephones within the call centers where are staffed by telephone agents, 

often called CSR (Customer Service Representatives).  In between the PBX and the agents, 

there is the ACD (Automatic Call Distribution) switch, whose role is to distribute calls 

according to skill and idle among agents. ACD is also the archival collection of operational 

data, which is of first importance research for call center (Koole and Mandelbaum, (2002)). 

Most call centers support Interactive Voice Response (IVR) units, or Voice Response Units 

(VRU's), which are the industrial versions of answering machines, including the possibilities 

of interactions. But more generally, a current trend is the extension of the call center into a 

contact center. Telephone service is enhanced by some additional multi-media customer-

contact channels such as e-mail, fax, internet or chat (in that order of prevalence). The 

customer can be often automatically identified by the PBX, using Automatic Number 

identification (ANI). Computer Telephony Integration, (CTI) is then used to search for 

customer’s history file. CTI and ANI are together used to identify the potential customer, for 

example, cross-selling opportunities and, thus routing of the call to an appropriately skilled 

agent. IVR and CTI can be used for reporting purposes.  

3. Call Centers from a Queuing Theory Perspective 

Queues (or waiting lines) are an unavoidable component of modern life. We are required to 

stand physically in queues in grocery stores, banks, department stores, amusement parks, 

movie theaters etc. Although we do not necessarily like standing in a queue, we appreciate the 

fairness that it imposes. Typically, a queuing system consist of a stream of customers 

(humans, finished goods, messages) that arrive at a service facility, get served according a 

given service discipline, and then depart. In practice we are interested in designing a queuing 

system, namely, its capacity, number of servers, service discipline, etc.   



From a queuing theoretic point of view, call centers can simply be modeled as M/M/s, 

sometimes referred to as Erlang-C. In this s server model, arrivals follow a Poisson process 

and service times are exponentially distributed. This simple model is very restrictive besides 

the assumptions of the arrivals and service times are Markovian; it does not acknowledge 

customer impatience, abandonment behavior, customers’ heterogeneity, or servers’ skill 

levels   (Brown et al., 2005).    To provide a more realistic model, (Garnett et al., 2002) 

introduces M/M/s+M model which is also called Erlang-A to approximate the time to 

abandonment a call by an exponential distribution.   ‘+M’ denotes again  Markovian inter-

arrival times.  Although customer patience should be properly included in a call center model, 

we leave the further discussions for the future work.  

Another simple model is M/M/s/FCFS/K/∞  which considers limited capacity in the waiting 

line which is realistic. We briefly explain this model. Assume that }0),({ ≥Χ ttK  is a birth 

and death process on } ,.....,1 ,0{ K with birth parameters λλ =i   for  10 −≤≤ Ki  and death 

parameters µµ ),min( sii =  for Ki ≤≤0 . Characteristics of M/M/s/FCFS/K/∞  queuing 

model then can be defined as follows (Kulkarni, 1999). 
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Expected number of customers in the system is calculated by 
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For entering customers 

0)( =Kiπ   for i ≥ K  i.e. a customer cannot enter the system, if the system is full. 

Expected waiting time for the entering customers is computed as 

)))(1(( K
LW

Kπλ −
=   , where ))(1( KKπλ − is arrival rate of entering customers. 

In the next section, we explain the fundamental components of our approach based on the 

work of Byers and So (Byers and So, 2004). 

4. The Foundation of The Framework  

We used birth and death processes to analyze the operations of a call center system with the 

assumptions that arrival and service times follow certain distributions.  Our framework shares 

some similarities with (Byers and So, 2004), thus it is worthy to give summarize their full-

policy model. Following the notation used in (Byers and So, 2004), we define that 

=λ  Arrival rate 

 s= number of service agents(servers) 

=Xµ  Service rate for cross-selling on top of regular service  

=Sµ Service rate for providing the regular service only 

h=Holding cost for each customer per unit time  

R= Revenue generated from each successful sale 



Css=Cross-sell skill of servers 

Xsµλρ =1   

Ssµλρ =2  

We assume in this study that the service time distributions for both providing cross-selling 

with the regular service and only regular service are both Markovian (exponential), with rates  

Xµ  and Sµ  respectively. We also assume that Xµ < Sµ  and 12 <ρ  throughout this study.  

In (Byers and So, 2004), the probability distribution of a successful cross-sell for existing 

customer base is assumed to be uniformly distributed in [ ]∈+∈− qq , , where 

10 ∈≤+∈≤−≤ qq . In other words, q is the long-run average probability that a random 

customer will make a purchase, and ∈  is a measure of variability of successful cross-sell 

across the existing customer base. In our study, we employ the same assumptions regarding 

the customer purchase probability distribution, however different types of distributional 

assumptions are out of scope of this paper and are left for the future work. 

The main goal of this study is to propose a framework to decide whether to cross-sell or not 

cross-sell by considering the system congestion information (queue length), customer profile 

information (likelihood to purchase) and cross-sell skill of server information. We consider 

cross-sell effort to an opportunity management for maximizing the expected operating profit 

in the system, which is equal to the expected revenue for successful cross-sell minus expected 

customer holding costs as used in general queuing theory.  

We incorporate queue characteristics such as the length, customer profile and server cross-sell 

skill information to control cross–sell opportunity to an individual customer. All customers 

are separated into two segment based on the estimated probability of a successful sale to 

customers in Byers and So, (2004). The top ( )10 ≤≤ pp  proportion of customers has the 

highest probability of successful cross-sell as high-value customers. The remaining customers 

belong to low value group.  A threshold value is used for cross-sell to an individual customer 



if and only if the total number of customers in the system is less than or equal to some pre-

determined threshold when that individual customer is being served. They assume 0≥hn  and 

0≥ln  to denote the respective thresholds used for high-value and low-value customers Byers 

and So, (2004). In our work, we propose a dynamic threshold which is only dependent on the 

number of customer in the system. Thus, our model is free of the parameters p, nl, and nh. 

Under the exponential service times assumption, we use birth-death process to determine 

expected operating profit. All customers are assumed to be first-come first-served. Let S= 

{ ( ) }),max(0;0:, sinini ≤≤≤  denote the state space of underlying birth-death process, 

where i denotes  the total number of customers in the system and n denotes the number of 

high-value customers currently by the servers. Let ni ,π denote the steady-state probability at 

state (i, n). We define )(ihµ and )(ilµ as the service rates for the high-value and low-value 

customers when there are i customers in the system, respectively. 
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The probability distribution of a   successful cross-sell of all customers is assumed to be 

uniform ],[ ∈+∈− qq  where 0 ≤ q ≤ 1. Hence, the probability distribution of purchase for high 



value customers is uniform ( )[ ]∈+∈−+ qpq ,21 , which implies that the average probability 

of a purchase by any random high-value customer is equal to ( )[ ]∈−+ pq 1 . The arrival rate 

for high-value customers is equal to pλ , the mean revenue per unit time because of cross-

selling to high-value customers is equal to ( )[ ]∈−+ pqpR 1λ . Similarly arrival rate of law 

value customers is equal to ( )p−1λ and the expected reward per unit time because of 

successful cross-sell to low–value customers is equal to ( )[ ]∈−− pqpR 1λ . Thus, the expected 

operating profit is equal to (Byers and So, 2004) 
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We also assume for this study that the cross-sell skill of the server (Css) is multi-leveled e.g. 

Faster and Slower customer agents. This introduces a new index for the state space namely 

the level of cross-sell skill. We can devise a policy to route incoming calls to better skilled 

agents first if available otherwise route the calls to the lower level skilled agents. It should be 

noted that the skill levels are related to the individual agent’s conversion rate i.e. successful 

cross-sell ability.  In well-run call center, it is known that those more skilled agents have 

better conversion rates and faster cross-selling and service times.  Then let S= 

{ ( ) }jsinijni ≤≤≤≤ 0,),max(0;0:,,  denote the state space of underlying birth-death 

process, where i denotes  the total number of customers in the system, n denotes the number 

of high-value customers currently by the servers and j denotes the cross-selling skill level (in 

other words agent type). Then, let jni ,,π denote the steady-state probability at state (i,n,j). 

Similar to above derivation, we can define different service, cross-selling rates for different 

type of customers and agents at the same time. This will obviously enlarge the state space, 

however it will result in a more realistic setup. By finding new steady state probabilities we 

can generate a new profit function in which we can differentiate different types of service 

rates and cross-selling revenues.  



Our framework (see Figure 2) differs from prior work in many ways. First of all, we consider 

adding information about agent cross-sell skills (i.e. agent type). Moreover, the centerpiece of 

our framework is a new product recommender system (Demiriz, 2004) that works 

concurrently with an ACD. This new product recommender system is devised to optimize the 

cross-selling activities by considering the real-time queue characteristics, customer profile, 

contact history, and the cross-sell ability of the agents. In a call center environment, we might 

also consider adding individual sales targets of each the agent into our framework. But this 

needs a careful consideration and it is out of scope of our work.  

Figure 2 

In the next section we introduce M/M/1 based formulation of our framework. The back-bone 

in our approach is to utilize a dynamic p value depending on queue length. In other words, at 

each state we use a different threshold to specify the high level customers.  

5. Dynamic Threshold for Cross-selling Under M/M/1 Assumptions 

The arrivals are again assumed to be Poisson  with parameter λ  and service times are 

exponentially distributed. Depending on the decision about the customer, the service rate will 

be either  with cross-selling (µX) or just the regular service (µS) rate. If the current customer 

falls into the top p fraction group then cross-selling attempt will be made by the customer 

service representative (agent). Thus the top p fraction of the customers can be considered as 

the high value customers and the rest of the customers can be considered as the  low level 

customers. 

The p value can be dynamically determined depending on the number of customers in the 

system. For example we can utilize  the family of anpnp =)(  functions where a could be 1, 

½, 1/3, ¼ etc. Figure 3 depicts the different types of functions with the initial p value of 0.9. 

In this figure, p is a function of n (the number of customers in the system). We can call p(n) as 

the dynamic cross-selling threshold. 



Figure 3. 
 

For example if there are 5 customers in the system then according to npnp =)( function 

approximately the top 60% of the customers will be treated as high value customers. When 

there are 10 customers in the system then approximately the top 31% of the customers will be 

treated as the high value customers. This can be done by simply ranking the customers 

according to some segmentation scheme. So we can actually utilize a segmentation scheme in 

our approach.  

For the case of one customer in the system,  since the arrival rate is λ and the dynamic cross-selling 

threshold is p1, the expected service rate will be  1 1(1 )x Sp pµ µ+ −  where µX  and  µS are cross-selling 

and regular service rates respectively. Similarly when there are n customers in the system, the 

service rate will be  SnXn pp µµ )1( −+ .   

Since the arrivals are Poisson process and the service times are exponentially distributed, this system 

can be considered as a birth and death process. We can find the steady state probabilities for this birth 

and death process as follows.                                            
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Figure 4. 

 

 

The probability of being n customers in the system can be calculated as 0ππ nn c= . For the birth and 

death process depicted in Figure 4 to be in steady state, the sufficient condition is that λ is less than the 

slowest service rate i.e. µX . Thus for the steady state distribution the sufficient condition is 

1<=
Xµ
λρ . 



When the cross-selling attempt is made to any customer, considering the successful cross-selling is 

uniformly distributed in [ ],q qε ε− +  then the average successful cross-selling rate will be q for any 

give customer. Thus the probability for the successful cross-selling for the top 50% of the customers 

will be greater than q, and for the bottom 50% of the customers will be less than q . In the case of n 

customers in the system, the success rate for the top p(n)% will be uniformly distributed in  

[ ]2 ( ),q p n qε ε ε+ − + . Thus the expected (average) success rate will be ( )1 ( )q p n ε+ − . 

5.1. The Objective Function 

Assume that revenue generated from a successful cross-selling attempt is R. Since the arrivals follow 

Poisson process, the rate of n customers will be seen by the customers who arrive the system is the 

long-run probabilities (steady state) of being n customers in the system (PASTA property). Thus when 

call center is empty, the rate of incoming customers will be equal to long-run probability that the 

system is empty i.e.  0π . Therefore, the expected revenue for the arriving customer when the system is 

empty will be customer)] High value selling,-cross Successful([0 PERπ . Since the events of the 

being a high value customer and having a successful cross-selling are independent, we simplify this 

expected value as follows. 

))1((
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Therefore, the expected revenue per unit time for the arriving customer when the system is empty is 

0 1 1( (1 ) )R p q pλ π ε+ − . 

Similarly, the expected revenue generated from the arriving customers when there are i customers in 

the system is  1 1( (1 ) )i i iR p q pλ π ε+ ++ − . 



If we assume the cost of waiting time per customer per unit time is h, the expected profit of 

the p* policy will be  ( )( )1 1
0

1i i i
i

R q p p hLλ π ε
∞

+ +
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+ − −∑  where  L is the expected number of 

customers in the system i.e. ∑
∞

=

=
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6. Experimental Results 

In this section, we conduct some experiments on our proposed M/M/1 dynamic p value (p* 

policy) model under various scenarios such as traffic intensity (
Xµ
λρ = ), initial p value and 

customer variability (ε). We observe the change in the profit under these scenarios.  

 

Figure 5 

 

Figure 5 depicts that for all initial p values ( npnp =)( ) when the traffic intensity ρ increases, 

the expected profit first increases and then after a peak point it starts decreasing. There are 

two reasons for that. The first one is, when the intensity increases it will be less likely to have 

few customers in the system, thus agents will be more selective to cross-sell which will 

reduce the expected revenue. The second one is, once the system gets crowded with the 

increasing intensity, the expected costs will increase naturally by increasing waiting times.     

It is evident from Figure 5 that the choice of initial p value (cross-selling threshold) have less 

impact on profit margin at lower traffic intensities than at the medium and high traffic 

intensities. This is due to the fact that regardless of the choice of p(n) values at lower traffic 

intensities, fewer number of customers receive cross-sell attempt. This is an important insight 

for the practical reasons. Because there is no need to calibrate the initial p values at lower 

traffic intensities.  For the medium and high level traffic intensities, it is recommended to 

calibrate the initial p value (cross-selling threshold).  



As seen in Figure 6, the effect of the variability of the cross-selling success (i.e. purchasing 

probability of the customer) is not noteworthy (insignificant).  Therefore we can neglect the 

effect of the variability in the customer profiles in call centers working at lower traffic 

intensities. However, it is also evident that managing such variability is crucial for the call 

centers run at higher traffic intensities to increase the profit margin.  

 

Figure 6 

 

  

Figure 7 shows that call centers with medium level traffic intensities always operate at higher 

profit levels for all initial p values. This result supports the fact that there are fewer cross-

selling attempts at lower traffic intensities due to the fewer customers and fewer cross-selling 

attempts at higher traffic intensities due to the increasingly selective attempts. Therefore call 

centers working at medium level traffic intensities are the best ones to offer cross-selling as 

reported in (Byers and So, 2007).   

 

Figure 7 

 

We can compare our results with baseline naïve models: a) Attempt each customer to cross-

sell b) Never attempt to cross-sell and just offer the regular service. Second naïve model will 

never generate any revenue since the regular service does not generate any revenue. The total 

cost will be –hL. Obviously the expected L will be less than the systems with  the cross-

selling attempts. There maybe some extreme cases where this loss model would be 

comparable to the alternatives.  



In the case of offering cross-sell to each customer, the expected profit will be hLRqF −= λ . 

Certainly,  the expected L would be larger than the selective cross-selling case. Therefore it 

may not be desirable to offer cross-selling to all customers. 

 We also run some experiments by implementing the full-policy model introduced in (Byers 

and So, 2007) to compare with our model and discuss similarities and differences. We report 

some results in Figure 8 and Figure 9. In these experiments, we change the  traffic intensity 

(
Xµ
λρ = ) from 0.2 to 0.95 by using the following parameter set (µS=2, R=10, h=1, p=0.5, 

q=0.5,  ε=0.2, and nh=10). We use nl=1 in Figure 8 and nl =5 in Figure 9.   

 

Figure 8 

Figure 9 

 

As Figures 8 and 9 show, increasing ln   in (Byers and So, 2007) model has an increasing 

effect in the number of customers in the call center and a decreasing effect on the long-term 

call center profit. Since an high ln  means that the call center is less selective about the cross-

sell attempted customers, from Figures 8 and 9 we see how important to be selective on cross-

sell attempts could be. Our dynamic p value model takes this fact into the account and allows 

the call center  to become more selective in its cross-sell efforts as the number of customers in 

the call center increases.  

(Byers and So, 2007) classifies the call center customers into low and high value customers 

by assuming that top p fraction of the customer portfolio is high class customers. However, 

they further assume that both class of customers have identical purchasing likelihood and a 

customer in either class brings in the same cross sale revenue. This is not very realistic since 

customers in different classes usually will have quite different purchasing probability and/or 



will generate different cross-sale revenue. Our model allows us to incorporate different 

customer purchasing behavior into call center modeling since we may choose different 

purchasing likelihood for each p(n) fraction of customer  portfolio defined by p* policy.  

7. Conclusion and The Future Work 

We proposed a new framework for cross-sell efforts in a call center from a queuing science 

point of view by considering agent skill set as well compared to previous work in the 

literature. We also propose a new recommender system that works with automatic call 

distribution systems to route the call to appropriate agent at real-time. A recommender system 

fully integrated with ACDs will certainly need constant monitoring of the call center 

environment.  

We believe that our M/M/1 p* policy is a modest starting point to eventually a generalized 

version where multi-server and limited space queues can be modeled more realistically. Our 

experimental results show similar results with an earlier model proposed in (Byers and So, 

2007).  However, we showed that our assumptions are more realistic and robust even for an 

M/M/1 call center environment. 

Our very next work will be to establish theoretical foundations of our framework for a multi-

server and limited space queue.  One important aspect, we need to address is to model 

customer patience and abandonment behavior in real-time queues. As mentioned briefly, our 

starting point will be the assumption that the distribution of the time to abandonment is 

exponential.     

On the other hand, the distributional assumptions on customer purchasing likelihood need to 

be generalized to further cases. In addition, we need to study the effects of different types of 

revenue schemes such as higher value customer may generate more revenue compared to 

lower value customers in a cross-selling transactions. Moreover, we need to study the cases 



where the regular services have a bottom-line revenue effects. That will be the case for a more 

interesting trade-off between cross-selling and regular service. 
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Figure 1. Operational scheme of a simple call  

 

 

 

 

Figure 2. Proposed Framework 
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Figure 3. Dynamic p values vs. the number of customers in the system for different p(n) 
functions. 
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Figure 4. M/M/1  birth and death process under dynamic p values 
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Figure 5. For the different initial p values, Profit vs. Traffic Intensity 
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Figure 6. For the different ε values, Profit vs. Traffic Intensity 
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Figure 7. Under different traffic intensity, the affect of picking initial p values on profit 
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Figure 8. (Byers and So, 2007) model with nl=1, nh=10 
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Figure 9. (Byers and So, 2007) model with nl=5, nh=10 

 


