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ABSTRACTA very basi
 problem in ma
hine learning is the over�tting of empiri
al data. Thisproblem o

urs where learning pro
esses 
onstru
t overly strong models to explainthe dependen
ies within empiri
al data. Often these strong models fail to performwell on the unseen data due to the strong bias towards the empiri
al data used inthe learning task.In order to prevent this over�tting problem, learning algorithms use di�erentremedies. For example regularization and early stopping in neural networks help toyield better models that perform well on unseen data. Pruning is used in de
isiontrees. Margin maximization te
hniques are used in Support Ve
tor Ma
hines. Su
hsolutions, in general, are examples of 
apa
ity 
ontrol te
hniques. By limiting theri
hness and the 
exibility of the learning method, we expe
t to prevent over�ttingproblem.In this resear
h, we introdu
e learning methods with new ways of handling
apa
ity 
ontrol. These methods are used in supervised, unsupervised and semi-supervised learning approa
hes by in
orporating all the available information onhand. Semi-supervised learning 
an exploit both labeled and unlabeled data. We�rst propose a geneti
 algorithm based model that uses unsupervised learning andunlabeled data (semi-supervised learning) as a new form of 
apa
ity 
ontrol. Wethen use unlabeled data to in
uen
e margin maximization in support ve
tor ma-
hines as an alternative form of 
apa
ity 
ontrol based on all available information.Finally, we use 
apa
ity 
ontrol in the label spa
e for a boosting approa
h whi
h
ombines the outputs of the many weak learning models by linear weighting. Ingeneral, we propose semi-supervised learning models based on both labeled and un-labeled data as new ways of 
apa
ity 
ontrol. Methods proposed in this resear
h haveshown strong results on ben
hmark problems 
ompared to alternative approa
hes.
ix



CHAPTER 1INTRODUCTIONOften, supervised learning problems 
an be posed as �nding dependen
ies (fun
-tions) between the empiri
al input data and the out
ome of the supervisor or su-pervision pro
ess. Three important issues must be addressed 
arefully in a su
hlearning pro
ess (adapted from [98℄):1. To estimate a fun
tion from a large set of fun
tions.2. To estimate su
h fun
tion using very limited number of examples (empiri
aldata).3. To generalize well on unseen data .Using overly strong or 
omplex fun
tions to de�ne su
h dependen
ies 
an resultin over�tting of the data and failure to generalize. For any learning task, limiting theri
hness and the 
exibility of the 
lass of fun
tions being sear
hed is 
alled 
apa
ity
ontrol. By 
ontrolling the 
apa
ity, we 
an pra
ti
ally avoid the over�tting problemon empiri
al data.The 
lassi
al statisti
al approa
hes su
h as Maximum Likelihood (ML) methoddo not solve issues listed above. Therefore many methods su
h as Neural Networks(NN) and de
ision trees have been developed in learning framework to address theseissues sin
e 1960's. Classi
al approa
h uses ML for density estimation, dis
riminantanalysis, and regression models. Sin
e ML might fail even in the simple 
ases su
h asestimating the mixture of normal densities, 
lassi
al parametri
 models might per-form poorly in the learning pro
ess as measured by generalization on unseen data.On the other hand, non-parametri
 methods su
h as Parzen windows are 
onsideredto be more desirable in terms of estimating a density from a wide 
lasses of densities
ompared to the parametri
 methods and have better asymptoti
 rate of 
onver-gen
e espe
ially for smooth densities. Although they have remarkable asymptoti
properties, experimental studies have shown that non-parametri
 methods did not1



2perform signi�
antly better than parametri
 methods when applied to very limitednumber of data points [98℄.There are many forms of 
apa
ity 
ontrol, for example regularization and earlystopping in NN. In Bayesian inferen
e, 
apa
ity 
ontrol is performed via strong a pri-ori. Spe
i�
ally, Bayesian approa
hes perform well, if the fun
tion being estimatedmat
hes with a priori 
lass of the fun
tions provided in the Bayesian inferen
e. Inaddition, a priori probability distribution of these fun
tions should re
e
t the real-ity. In
omplete representation of the reality might slow down the 
onvergen
e speedof Bayesian inferen
e. Thus, Bayesian approa
h requires strong a priori to 
ontrolthe 
apa
ity of the learning pro
ess.Supervised learning methods, in general, minimize a loss fun
tion based onthe dis
repan
y between results from the model and the response from the super-visor. Minimizing this loss fun
tion just based on the empiri
al data 
an result inover�tting. Stru
tural Risk Minimization (SRM)was introdu
ed by statisti
al learn-ing theory to �nd a trade-o� between empiri
al risk and fun
tional 
omplexity [98℄.Pra
ti
ally, SRM implements 
apa
ity 
ontrol through a 
omplexity penalty term[41℄. In SRM, a stru
ture is given as weak a priori to the learning pro
ess. SRMthen �nds optimal parameters for su
h a stru
ture. For example in 
lassi�
ation,a

ording to the prin
iples of SRM, for a �xed empiri
al risk level, �nding the largestmargin of separation that exists within the data prevents over�tting. In 
ontrast,Bayesian inferen
e has an impli
it 
apa
ity 
ontrol depending heavily on the stronga priori probability fun
tion provided by the user thus requires human interfa
e inlearning pro
ess.In this resear
h, di�erent ways of 
apa
ity 
ontrol are proposed based on in-
orporating all the available information on hand. For example if we are performinga 
lassi�
ation task based on labeled training data, we would like to exploit anyadditional unlabeled data. The proposed methods perform 
apa
ity 
ontrol on su-pervised and \semi-supervised" learning.Typi
ally learning tasks are divided into two 
ategories: supervised learningand unsupervised learning. In supervised learning, training is done using data pro-vided with the labels (e.g. dependent variable) and the resulting 
lassi�er is used



3to 
lassify unlabeled data (e.g. data with unknown dependent variable). In this
ase, the expert needs to de�ne 
lasses expli
itly and needs to label data prior tothe training phase. The results are usually 
ompared by ranking the generalizationability and a

ura
y on both labeled and unlabeled datasets.Learning without known labels is known as unsupervised learning. Clusteringis an important example of unsupervised learning methods. Clustering is simply de-�ned as grouping similar obje
ts. In 
lustering, 
lasses or groups of the obje
ts arenot known a priori but rather an emergent property of the data. Clustering algo-rithms are valuable for dis
overing patterns in data. In many domains, the diÆ
ultyof labeling data and the la
k of prior knowledge about 
lasses sometimes limit us touse 
lustering algorithms to analyze and to group the data. For example, in order to
lassify a gene, a bio
hemist might have to run very expensive and time 
onsumingexperiments. By 
ondu
ting 
luster analysis, similar genes 
an be grouped togetherand results 
an be summarized to dis
over hidden relationships. Thus, useful in-formation 
an be gathered from 
lustering even in the 
ase of la
k of informationabout the domain itself. A number of 
lustering algorithms are summarized in [58℄.But most of them su�er from the following problems:(1) Choosing and validatingthe number of 
lusters and (2) Ensuring that the algorithmi
 �ndings represent thereality. Moreover,as stated in [13℄, k-means like 
lustering algorithms also su�erfrom the problem of evenly distributing the points among the 
lusters, sin
e a sumof squares type of obje
tive fun
tion is minimized. To form ne
essary foundation forsupervised and unsupervised learning, we give a brief literature review in Chapter2. Depending on appli
ation domain, both supervised and unsupervised learningmethods have superior properties 
ompared to the other one. They also su�er fromsome weaknesses. For example, the validation of 
lusters found in 
luster analysis
ould be an ill-de�ned pro
ess. In supervised learning, the diÆ
ulty in interpretingthe 
lassi�
ation results (unless we use a de
ision-tree like method) may make resultsless useful.To avoid these weaknesses and to use superior properties, a semi-supervisedapproa
h is proposed in this resear
h. Semi-supervised learning is de�ned as 
om-



4bining both labeled and unlabeled data to a

omplish a learning task. By using asemi-supervised approa
h, we 
an 
ontrol the 
apa
ity of a learning fun
tion basedon all the information from the data. One possible way of doing is introdu
ing partialsupervision into unsupervised learning. Using the labeled data in semi-supervisedlearning will yield meaningful 
lusters and these 
lusters will be homogeneous. Asemi-supervised 
lustering algorithm was introdu
ed in [76℄. It has been su

ess-fully applied to the segmentation of magneti
 resonan
e images (MRI) as reportedin [13℄ and [95℄. Due to the diÆ
ulty of the labeling the data in the 
ase of im-age segmentation, very limited number of points were labeled in [13℄. A partiallysupervised 
lustering algorithm [13℄ is introdu
ed to minimize a weighted sum ofsquare obje
tive fun
tion formed by using both the labeled and unlabeled data. Aniterative s
heme 
ontinues until no improvement is made on the obje
tive more thana predetermined threshold. The prior weights and labels are determined by experts'knowledge. The authors reported better results by using semi-supervised fuzzy
-means algorithm 
ompared to traditional fuzzy 
-means algorithms on both arti-�
ial and MRI data [13℄. Even in the 
ase of very few labeled data, semi-supervisedmethod improved results.In Chapter 3, we introdu
e a new way of 
apa
ity 
ontrol based on a semi-supervised 
lustering approa
h implemented with Geneti
 Algorithms (GA). Dataare 
lustered using an unsupervised learning te
hnique biased toward produ
ing
lusters as pure as possible in terms of 
lass distribution. These 
lusters 
an thenbe used to predi
t the 
lass of future points. One key additional bene�t of thisapproa
h is that it allows unlabeled data with unknown 
lass to be used to improve
lassi�
ation a

ura
y. The obje
tive fun
tion of a traditional 
lustering te
hnique,
luster dispersion in the k-means algorithm, is modi�ed to minimize both the within
luster varian
e of the input attributes and a measure of 
luster impurity based onthe 
lass labels. By 
ontrast to k-means 
lustering algorithm, this implementation�nds a near optimum number of 
lusters for a given parameter set at the end of thelearning pro
ess. This means that optimum number of 
lusters is not a parameterin the model, however it is a produ
t of the learning pro
ess. Minimizing the within
luster varian
e of the examples is a form of 
apa
ity 
ontrol to prevent over�tting.



5The GA method utilizes a parametri
 �tness fun
tion based on both 
lusterdispersion metri
 su
h as Davies-Bouldin Index (DBI) [36℄ and a 
lass impuritymeasure su
h as the Gini index [24℄. Having a parametri
 obje
tive allows theuser to solve 
lassi�
ation, 
lustering and semi-supervised learning problems byusing an appropriate parameter set. The experimental results show that using the
lass information often improves the generalization ability 
ompared to unsupervisedmethods based only on the input attributes. Results from two di�erent 
lusterdispersion measures, Mean Square Error (MSE) and Davies-Bouldin Index (DBI),are reported. Results show that using DBI in transdu
tive model gives an advantageto improve the overall a

ura
y and the quality of the 
lusters found by the GAmodel. Ben
hmark studies also indi
ate that the method performs very well evenwhen few training examples are available.Training using information from unlabeled data might help to improve 
lassi-�
ation a

ura
y as well. Hen
e an alternative approa
h in semi-supervised learningis to use unlabeled data in supervised learning as proposed by Vapnik in the 
ontextof transdu
tion [97℄. The key task in transdu
tion is to estimate the fun
tion valuesof the 
ertain points instead of estimating fun
tion itself everywhere. This 
ontrastswith indu
tion, estimating fun
tion everywhere, sin
e transdu
tion estimates thelabels in the working set whi
h 
ontains unlabeled data by implementing stru
turalrisk minimization on all the available information from both the training and theworking sets. The 
apa
ity 
ontrol is provided by margin maximization where themargin is measured on both the labeled and unlabeled data. Sin
e we in
lude theworking set into our model and make use of it, one would expe
t to get better per-forman
e in terms of a

ura
y whi
h is 
ru
ial for business de
isions su
h as 
reditline issue, reviewing mortgage appli
ations and other 
ustomer related �nan
ial ser-vi
es. On the other hand, by in
luding extra points from unlabeled data, we areable to better understanding underlying input (population) distribution.In Chapter 4, we introdu
e a semi-supervised support ve
tor ma
hine (S3VM)method for 
apa
ity 
ontrol. We use S3VM to solve the overall risk minimization(ORM) problem posed by Vapnik. The ORM problem is to estimate the value of a
lassi�
ation fun
tion at the given points in the unlabeled working set. This 
on-



6trasts with the standard learning problem of empiri
al risk minimization (ERM)whi
h estimates the 
lassi�
ation fun
tion at all the possible values. We propose ageneral S3VM model that minimizes both the mis
lassi�
ation error and the fun
-tion 
apa
ity based on all the available data. We show how the S3VM model for1-norm linear support ve
tor ma
hines 
an be 
onverted to a mixed-integer program(S3VM-MIP) and then solved exa
tly using integer programming. We implementedthis (S3VM-MIP) in AMPL and used CPLEX as an integer programming solver. Re-sults of S3VM-MIP and the standard ERM approa
hes are 
ompared on eleven datasets. Our 
omputational results support the statisti
al learning theory results ontransdu
tion showing that in
orporating the working set data improves generaliza-tion when insuÆ
ient training information is available. In every 
ase, S3VM eitherimproved or showed no signi�
ant di�eren
e in generalization 
ompared to the ERMapproa
h. This was the �rst known model to solve transdu
tion problem su

esfullyin the literature [9℄.In Chapter 4, we also propose two other variants of the S3VM . The �rstapproa
h is to use lo
al learning to improve the 
onvergen
e speed of the S3VM.The advantages of using lo
al learning models are very well dis
ussed in [1℄. Thebasi
 idea is to implement S3VM in the k-nearest neighborhood of points whi
hresults in smaller integer-programming models to solve. We report improved results
ompared to S3VM for the same datasets. The lo
al learning approa
h is s
alableto very large datasets. In the se
ond approa
h, we investigate a gradient des
entalgorithm for the quadrati
 transdu
tion problem. The numeri
al results based onproposed des
ent algorithm and the transdu
tive algorithm based on SVM-Light [60℄do not 
on
lusively support the transdu
tive approa
h. In general, algorithms forthe quadrati
 transdu
tive models are mu
h slower and prone to lo
al minima thanthose for the linear models. Our experimental study on these statisti
al learningmethods indi
ates that in
orporating the working set data for the 
apa
ity 
ontrol
an improve generalization ability, but the improvements were not large.In Chapter 5, we again fo
us on 
apa
ity 
ontrol in supervised learning but ina di�erent 
ontext. In Chapter 4, the proposed algorithms perform 
apa
ity 
ontrolin the feature spa
e (input data). In Chapter 5, we spe
i�
ally fo
us on 
apa
ity



7
ontrol in the label spa
e using a boosting approa
h. The idea in boosting is touse a linear 
ombination of many weak 
lassi�
ation or regression fun
tions (
alledweak learners), instead of one strong fun
tion. The resulting ensemble fun
tionfrequently performs mu
h better than any single fun
tion. Re
ent works by severalpeople have shown boosting 
an be viewed as margin maximization in fun
tion spa
e[87, 51℄. Di�erent boosting methods (e.g. AdaBoost [87℄) 
an be viewed as gradientdes
ent methods that minimize margin 
ost fun
tions. In Chapter 5, we address theproblem of the sensitivity of this fun
tion to outliers by adapting the soft margin
ost fun
tion of support ve
tor ma
hines to boosting. Minimizing this soft marginerror fun
tion dire
tly optimizes a generalization error bound.We formulate the problem as if all the possible weak learners had alreadybeen generated. The 
lass labels produ
ed by the weak learners be
ome the newfeature spa
e of the problem. The boosting task be
omes to 
onstru
t a learningfun
tion in the label spa
e that minimizes 
lassi�
ation error and maximizes thesoft margin. The resulting linear program 
an be eÆ
iently solved using 
olumngeneration te
hniques developed for large-s
ale optimization problems. The rows ofthe linear program ea
h 
orresponding to one weak learner are generated as needed.The dual variables of the linear program provide the mis
lassi�
ation 
osts neededby the learning ma
hine. The resulting \LPBoost" algorithm has many attra
tiveproperties. The algorithm has well de�ned 
onvergen
e 
riteria. It 
onverges in a�nite number of iterations to a globally optimal solution. In 
omputational exper-iments, the algorithm performs very well both in terms of 
omputational time andgeneralization ability. The algorithm requires very few iterations. Thus few weaklearners are a
tually generated and even fewer appear in the optimal learning ensem-ble. Numeri
al experiments are 
ondu
ted by using both de
ision stumps and C4.5[79℄. The performan
e of the sparse learning ensembles produ
ed was 
ompetitivewith the other boosting approa
hes.The basi
 idea in our resear
h is to use all the available information in thelearning task to improve the generalization ability through the 
apa
ity 
ontrolwhether extra information is in the form of raw data or out
omes from severalmodels. We explore new types of the 
apa
ity 
ontrol in the 
ontext of supervised



8and semi-supervised learning. The work here fo
uses on the 
lassi�
ation problemwhere the labels are 
hosen from a �nite set. In pra
ti
e, the ideas presented in thisresear
h 
an be generalized to the regression problems where the data labels 
omefrom a 
ontinuous domain. Ideas for extensions to regression are summarized in the
on
lusion 
hapter.



CHAPTER 2A Brief Literature Review on Data Analysis2.1 Introdu
tionHistori
ally statisti
s had a great impa
t on the traditional data analysis te
h-niques. For example Fisher's Dis
riminant Analysis opened a new era in s
ienti�
resear
h a
tivities. Indeed s
ienti�
 resear
h depends on a solid and profound dataand fa
t analysis. Classi�
ation has been used widely as a tool and representationte
hnique in s
ienti�
 resear
h sin
e an
ient times. In s
ienti�
 resear
h, data fre-quently plays a 
entral role. Depending on data an appropriate analysis te
hniquemay be used to 
ome up with dependable 
on
lusions. We will brie
y summarizetwo major data analysis te
hniques in this 
hapter: 
luster analysis based on unsu-pervised learning and 
lassi�
ation based on supervised learning. Then, we look ata new area of data analysis - semi-supervised learning.Cluster analysis is one of the very important unspervised learning methods. Itis used in various resear
h areas su
h as life, so
ial and natural s
ien
es. Thus, we 
an�nd di�erent de�nitions for the terms 
luster and 
luster analysis in the literaturebased on various appli
ation areas. Indeed, s
ientists and resear
hers have givendi�erent de�nitions to the 
luster analysis for the purpose of de�ning their ownresear
h problems in a proper manner. At the most general level, a 
luster 
onsistsof similar obje
ts 
olle
ted or grouped together. Everitt do
uments [45℄ some of thede�nitions of a 
luster:� A 
luster is a set of entities whi
h are alike su
h that entities from di�erent
lusters are not alike.� A 
luster is an aggregation of the points in the test spa
e su
h that the distan
ebetween any two points in the 
luster is less than the distan
e between anytwo points in the 
luster and any point not in it.� Clusters may be des
ribed as 
onne
ted regions of a multi-dimensional spa
e
ontaining a relatively high density of points.9



10A

ording to Hansen and Jaumard [53℄, 
lusters are required to be homoge-neous and/or well separated. Homogeneity means that entities within the same
luster should resemble one another and separation means that entities in di�erent
lusters should di�er one from the other.As indi
ated in [69℄, 
luster analysis is mainly used for the data analysis as amultivariate statisti
al tool. It is also used for data summarization and 
ompres-sion. Storage and retrieval systems in hardware te
hnologies also implement 
lusteranalysis to improve a

ess time to stored information. There are also many pra
ti
alappli
ations of 
luster analysis in pattern re
ognition.Besides 
luster analysis as an example of unsupervised learning, we will givebrief explanation of some 
lassi�
ation te
hniques as a main method in supervisedlearning, parti
ularly Support Ve
tor Ma
hines (SVM) to 
omplete ne
essary ba
k-ground information. In their early work, Vapnik and Chervonenkis developed theoptimal separating plane te
hnique for 
lassi�
ation and later on Vapnik introdu
edthe idea of stru
tural risk minimization whi
h provides theoreti
al results to givethe generalization error bounds of a separating hyperplane. The stru
tural riskminimization and optimal separating hyperplane form the basis of SVM. Indeed,SVM is a logi
al extension to the optimal separating hyperplanes method. A SVMmaps the input spa
e into a high-dimensional feature spa
e through some non-linearmapping (kernel fun
tions) 
hosen a priori and then 
onstru
ts the optimal separat-ing hyperplane in the feature spa
e. This mapping makes it possible to 
onstru
tlinear de
ision surfa
es in the feature spa
e whi
h 
orrespond to non-linear de
isionsurfa
es in the input spa
e [93℄. Having the ability to form non-linear de
ision sur-fa
es in input spa
e makes SVM a promising 
lassi�
ation te
hnique as a statisti
allearning method. A variation of SVM for data analysis is introdu
ed in this studyto do semi-supervised data analysis.The outline of the rest of this 
hapter is follows. Se
tion 2.2 fo
uses on 
lus-ter analysis, �rst, general approa
hes in 
luster analysis are summarized. Later,examples of 
luster analysis implementations are given in Se
tion 2.2. We explainbrie
y some 
lassi�
ation te
hniques in
luding de
ision trees in Se
tion 2.3 of this
hapter. In Se
tion 2.4, SVM method is explained in some details as an alternative



11learning method to the traditional ones. In Se
tion 2.5, the semi-supervised learningproblem is dis
ussed in general and some related works to semi-supervised learningare reviewed.2.2 Unsupervised Data Analysis MethodsAs we mention above, a 
luster is a group of similar obje
ts based on a metri
.Similarity or homogeneity is an important measure for the obje
ts in the same
luster. On the other hand, we 
an also de�ne the metri
 used in the 
luster analysisin a way to minimize dissimilarity (dispersion) within the 
lusters. Like any otherdata analysis method, 
luster analysis require some steps to follow. In their paper[53℄, Hansen and Jaumard approa
h 
luster analysis from a mathemati
al point ofview. Steps of a 
luster analysis in a 
ommon framework are given below.� Sample: Sele
t a sample S of n entities among whi
h 
lusters to be foundwhere ea
h entity is a ve
tor.� Data: Observe or measure p 
hara
teristi
 of the entities of S. This yields an� p data matrix X.� Dissimilarities from the matrix X a n � n matrix D = (dkl) of dissimilaritiesbetween entities where dkl � 0; dkk = 0; dkl = dlk.� Constraints: Choose the type of 
lustering desired. Spe
ify also further 
on-straints on the 
lusters, if any.� Criterion: Choose a 
riterion to express homogeneity and/or separation of
lusters in the 
lustering to be found.� Algorithm: Choose or design an algorithm for the problem de�ned in Con-straints and Criterion items.� Computation: Apply the 
hosen algorithm to matrix D = (dkl).� Interpretation: Apply formal or informal tests to sele
t the best 
lustering.Des
ribe 
lusters by their des
riptive statisti
s.



12Some remarks 
ould be made about dissimilarities at this point. First, dissim-ilarities may be 
omputed from the sour
es other than a matrix of measurements X.Se
ond, for some methods only the order of dissimilarities matters. Third, 
lusteranalysis is not the only method to study dissimilarities. Fourth, instead of 
om-puting dissimilarities, one 
an perform a di�erent type of 
luster analysis (dire
t
lustering) whi
h requires using the matrix X. The 
lusters found by dire
t 
lus-tering 
orrespond to 
on
epts. Re
ently, 
on
eptual 
lustering has be
ome a verya
tive �eld of resear
h [42, 84℄.There are basi
ally �ve major types of 
lustering te
hniques mentioned in[53℄: subset, partition, pa
king, 
overing, and hierar
hy. More emphasis is givenon the hierar
hi
al 
lustering algorithms from the mathemati
al programming pointof view. There are two main types of hierar
hi
al 
lustering. First one is theagglomerative and se
ond one is the divisive hierar
hi
al 
lustering algorithm. Somealgorithms for partitioning type of 
lustering from the dynami
 programming, graphtheoreti
al, bran
h and bound and 
utting plane approa
hes are also listed.One of the most 
ited referen
es in the 
luster analysis literature is written byJain and Dubes [58℄. In this book, 
lustering is de�ned as an ex
lusive and unsuper-vised 
lassi�
ation. Clustering is ex
lusive in a sense ea
h obje
t belongs to the onlyone 
luster, overlapping is not allowed. It is unsupervised, be
ause obje
ts are notlabeled prior to implementation. Unsupervised 
lassi�
ation (
lustering) bran
hesinto two types of 
lassi�
ation: hierar
hi
al and partitional. Several algorithms 
anbe proposed to express the same ex
lusive, unsupervised 
lassi�
ation (
lustering):� Agglomerative vs. divisive: An agglomerative hierar
hi
al 
lustering pla
esea
h obje
t in its own 
luster and gradually merges these atomi
 
lustersinto larger ones. Thus, it is a bottom-top algorithm. A divisive hierar
hi
al
lustering algorithm, in the 
ontrast, starts with one 
luster and then splitsthis one down further. Thus, it is a top-down algorithm.� Serial vs. simultaneous: Serial pro
edures handle the obje
ts (patterns) oneby one in an on-line pro
ess. Simultaneous pro
edures handle all the obje
tstogether in a bat
h pro
ess.



13� Monotheti
 vs. polytheti
: A monotheti
 
lustering algorithm uses the fea-tures (variables) one at a time.� Graph theory vs. matrix algebra: Some algorithms are expressed in terms ofthe graph theory. Some might be 
onstru
ted algebrai
ally espe
ially usingthe ve
tor algebra.Two most known algorithms from the graph theory are single-link and 
omplete-link algorithms. Single-link 
lusters are 
hara
terized as maximally 
onne
ted sub-graphs, whereas 
omplete-link 
lusters are 
liques or maximally 
omplete subgraphs.In partitional 
lustering, K-means [58℄ like algorithms are highly used and verypopular. This kind of algorithms has lo
al 
onvergen
e. Usually the obje
tive is tominimize mean square error within 
lusters and to maximize it between 
lusters.The most important step in 
luster analysis is the interpretation of the results.One important point should be addressed 
arefully: the validity of 
lusters. Problemmight o

ur if di�erent 
luster methods yield di�erent 
lusters whi
h is high likely.Whi
h partition is the 
orre
t one? Another sour
e of doubt in 
lustering resultsis the number of 
lusters found within data. How do we know that whi
h numberis the 
orre
t one? Sin
e there is almost no way to know the 
orre
t answers tothese two questions, heuristi
 methods have been developed. Both global and lo
alheuristi
 measures are given in [57℄.Cluster analysis has been applied su

essfully in various dis
iplines. Patternre
ognition is the one of the major �elds. In [25℄, Buhmann summarizes Expe
tationMaximization (EM) type algorithms for data 
lustering and data visualization pur-poses. EM algorithms are sto
hasti
 optimization algorithms. Buhmann do
umentstwo 
on
eptual approa
hes to 
luster analysis.� Parameter estimation of the mixture models by parametri
 statisti
s.� Ve
tor quantization of a data set by 
ombinatorial optimization.Parametri
 statisti
s assumes that noisy data have been generated by an un-known number of qualitatively similar sto
hasti
 pro
esses. Ea
h pro
ess is 
har-a
terized by a unimodal probability density whi
h is modeled by a parameterizedmixture model e.g. Gaussian mixtures.



14Ve
tor quantization aims at �nding a partition of the data set based an opti-mization prin
iple. Partitioning type of 
lustering, a

ording to Buhmann, arises intwo di�erent forms depending on the data format.� Central 
lustering of the ve
torial data.� Pairwise 
lustering of the proximity data (dissimilarities).In [25℄, Buhmann introdu
es �ve EM type algorithms for 
entroid estimation,pairwise 
lustering, and Multi-Dimensional S
aling (MDS) by deterministi
 anneal-ing, stru
ture preserving MDS. All algorithms have two 
ommon steps:� E-like step: The expe
tation value of the 
omplete data log-likelihood is 
al-
ulated and 
onditioned on the observed data and the parameter estimates.This yields the expe
ted assignment of data to mixture 
omponents.� M-like step: The likelihood maximization step estimates the mixture param-eters, e.g. the 
enters and the varian
es of the Gaussians.In [55℄, the authors expand the idea in [25℄ to a
tive data sele
tion for 
lus-tering. The authors propose EM-like iteration s
heme with the E-step repla
ed bythe 
lustering algorithm itself. They also propose a 
riterion for the a
tive datasele
tion. They use this s
heme in the data query frame. They report that the
lustering 
ost de
reases when this 
riterion is implemented.A rigorous mathemati
al framework of Deterministi
 Annealing (DA) andMean Field Approximation (MFA) is presented in [56℄. The authors use the resultto develop algorithms for an unsupervised texture segmentation whi
h is equivalentto pairwise 
lustering problem, on
e an appropriate homogeneity measure has beenidenti�ed. They 
ompare the results of these algorithms with the other well-knownones. The optimization method used 
ombines advantages of simulated annealingwith the eÆ
ien
y of a deterministi
 pro
edure. It has been applied su

essfully toa variety of 
ombinatorial optimization problems and 
omputer vision tasks.Simulated annealing, a sto
hasti
 optimization strategy, has be
ome very pop-ular in re
ent years to solve image pro
essing tasks. The random sear
h is modeledby an inhomogeneous dis
rete-time Markov-
hain whi
h sto
hasti
ally samples the



15solution spa
e. The major disadvantage in simulated annealing is that the sto
has-ti
 te
hniques might be extremely slow. But on the other hand, a slow annealingpro
ess yields very high quality partitions. The key idea in DA is to 
al
ulate theexpe
tations of some relevant parameters analyti
ally. Authors extend the idea ofDA to mean�eld annealing and they propose an algorithm for texture segmentationby using MFA. Gibbs sampling plays an important role in both DA and MFA.Fisher, in [46℄, introdu
es an in
remental 
on
eptual 
lustering algorithm. A
on
eptual 
lustering system a

epts a set of obje
t des
riptions and produ
es a
lassi�
ation s
heme over the observations. This is an unsupervised learning task.It uses an evaluation fun
tion to dis
over 
lasses with good 
on
eptual des
riptions.Thus, it is a type of learning by observation (as opposed to learning from examples)and it is an important way of summarizing the data in understandable manner.COBWEB , the algorithm proposed in [46℄, is an in
remental and hierar
hi
al 
lus-tering algorithm. It yields understandable tree stru
tures. In
remental learninghelps redu
ing the 
ost of 
lustering while preserving the quality of the 
on
eptualdes
ription.Clustering problems have been studied and applied in fuzzy logi
. Bezdekanalyzed data supplied by NASA [15℄. The data set was 
olle
ted remotely fromthe astronauts during spa
e missions. He implemented a 
-means fuzzy 
lusteringalgorithm whi
h resembles the k-means algorithms. Overlapping is allowed in fuzzy
lustering approa
h by fuzzy membership fun
tion. Thus an obje
t might belong tomore than one 
lusters. Fuzzy 
-means 
lustering algorithm has some limitationse.g. it works for a very limited number (� 10) of 
lusters. But he reports that thequality of 
lusters are noteworthy and the error rates are very low.Re
ently, 
luster analysis has attra
ted a lot of attention from the area ofdata mining. One task in data mining is the sear
h for hidden patterns that mayexist in large databases. One appli
ation of 
luster analysis is to \mine" spatialdata. Ng and Han have developed the CLARANS [73℄ based on a randomizedsear
h. Experimental results are promising. Spatial data mining helps to extra
tinteresting features, to 
apture intrinsi
 relationship between spatial and non-spatialdata, to present the data regularity 
on
isely, and to reorganize spatial databases



16to a

ommodate data semanti
s in order to improve performan
e.We brie
y summarized 
luster analysis and its appli
ations above as an ex-ample of unsupervised learning. Our fo
us in this resear
h also requires knowledgeon supervised learning methods. We summarize some 
lassi�
ation methods in thenext se
tion.2.3 Supervised Data Analysis MethodsClassi�
ation methods have been used and studied very mu
h in the ma
hinelearning literature as well as in the other applied s
ien
es and engineering. Amongthese methods tree-like ones are very 
ommon. Thus, de
ision trees have re
eiveda lot of attention from di�erent dis
iplines. One of the earliest and well-knownalgorithms is ID3 developed by Quinlan. In [77℄, Quinlan introdu
es ID3 whi
h is atop-down de
ision tree algorithm. A top-down algorithm starts from the root andsplits data until it rea
hes the termination nodes. ID3 performs a non-in
rementallearning from examples. It bran
hes the tree using information gain as the splitting
riteria. The information gain is de�ned by the information theory and algorithm
he
ks whether it de
reases or not at a given node by splitting further. ID3 hasbeen used extensively, sin
e it was introdu
ed. Re
ently other ID3-like algorithmshave been developed and applied su

essfully [78℄. The aims in developing newalgorithms are �nding better de
isions, having faster algorithms, and getting morea

urate learning strategies. C4.5 [78℄ is a very su

essful de
ision tree method.One of the important features of C4.5 is to enable the usage of mis
lassi�
ation
osts. This is espe
ially very important for the boosting appli
ations and also forthe unbalan
ed datasets.De
ision trees have also been used for regression. A regression tree is a tree-stru
tured regression approa
h whi
h allows 
omplex models to be 
onstru
ted fromseveral lower order models. The de
ision tree partitions the data and a regressionmodel is 
onstru
ted in ea
h partition. These models 
an be kept low order andhen
e be more interpretable. Regression trees also have the advantage that thesimple form of the �tted fun
tion in ea
h terminal node permits easily the studyof the statisti
al properties of the model. In [29℄, Chaudhuri, Lu, Loh, and Yang



17propose a generalized regression tree algorithm. This method simply blends a tree-stru
tured nonparametri
 regression and an adaptive re
ursive partitioning withmaximum likelihood estimation. Traditional regression trees su
h as CART [24℄(developed by Breiman, Friedman, Ulshen, and Stone) partition the regressor spa
eand 
onstant models are 
onstru
ted at the leaf nodes of the regression trees. Inessen
e, sin
e models are 
onstant at the leaf nodes, de
ision tree regression 
an beinterpreted as a histogram approximation of the response surfa
e. Sin
e 
lassi�
ationis a spe
ial 
ase of the regression, CART is also used mostly for the 
lassi�
ationpurposes.A large number of de
ision tree te
hniques have been proposed by the manyauthors in literature. Due to the la
k of spa
e, we will mention brie
y a few of them.Lazy De
ision Trees [49℄ were proposed by Friedman, Kohavi, and Yun in order toover
ome some problems fa
ed by traditional de
ision trees. Top-down de
isiontree algorithms implement a greedy approa
h that attempts to �nd a small tree.Most of the sele
tion measures are based on one level of lookahead. A

ording toauthors, two related problems with the representation stru
ture are the repli
ationand the fragmentation. The repli
ation problem for
es dupli
ation of the subtrees indisjun
tive 
on
epts. The fragmentation problem 
auses partitioning the data intosmaller fragments. In order to avoid fragmentation problem as mu
h as possible, theauthors 
hose a test 
riteria that is a binary split on a single value and have allowedalgorithm to split on any feature value is not equal to the instan
e's value. Thisalgorithm is slow 
ompared to the top-down de
ision trees. The indu
tion pro
essin lazy de
ision trees is delayed until a test instan
e is given. Thus it is a querybased method (a form of lo
al learning).In de
ision tree 
onstru
tion, splitting 
riteria plays an important role. Uni-variate splits are 
ommon approa
h in the de
ision tree 
onstru
tion. In [6℄, Bennettand Blue propose a multivariate split approa
h for a �xed de
ision tree stru
ture.A noteworthy point in this arti
le is that the de
ision tree stru
ture is �xed as inneural networks. Typi
ally in implementation of de
ision trees, during the trainingphase a maximal tree is grown. In the pruning phase, the tree size is redu
ed to anoptimal level by 
utting out unne
essary bran
hes. The proposed method in [6℄ does



18not require to implement any pruning algorithm in it, sin
e it is a �xed stru
ture.Be
ause of multivariate fashion, method �nds better de
ision rules and performsbetter in terms of overall a

ura
y. Bennett and Blue suggest using di�erent opti-mization and sear
h algorithms to solve the mathemati
al programming model for
onstru
ting su
h a de
ision tree.One of the approa
hes for solving 
lassi�
ation problem is the nearest neigh-bor method whi
h is a form of lo
al learning. Determining a proper metri
 playsvery important role in this type of algorithms. In pra
ti
e Eu
lidian-like distan
esare used mostly. In [48℄, Friedman proposes a 
exible metri
 and related two algo-rithms to solve 
lassi�
ation problems. He gives a solid statisti
al ba
kground on
lassi�
ation problems. The 
urse of dimensionality, variable subset sele
tion andre
ursive partitioning are dis
ussed from the nearest neighbor method point of view,prior to developing algorithms in this arti
le. The ma
hete is a re
ursive partition-ing algorithm whi
h splits only the most relevant variable. This way is more likea winner-take-all situation. In the opposite, the s
ythe tries to solve bias problem
reated by splitting by the most relevant variable. Various types of the splitting
riteria su
h as purity index are dis
ussed in [48℄.Although numerous number of publi
ations exist in the �eld of 
lustering and
lassi�
ation, very limited number of papers were reviewed in this 
hapter. SupportVe
tor Ma
hines has be
ome very popular re
ently as a new way of ma
hine learningmethod. Following se
tion fo
uses on the theory of SVM and then some appli
ationsof them are summarized brie
y.2.4 Support Ve
tor Ma
hinesThe 
lassi�
ation problem has been studied extensively sin
e Fis
her intro-du
ed the notion of linear dis
rimination in mid 30's. Later, in the 60's Rosenblattintrodu
ed the per
eptron as a new way of ma
hine learning. Until ba
k-propagationwas dis
overed by Rumelhart, Hinton, and Williams [83℄ in mid 80's, the per
ep-tron method 
ould not get enough attention be
ause of some theoreti
 limitations.Sin
e the mid 80's neural networks have be
ome very popular in the �eld of pat-tern re
ognition and ma
hine learning. Neural networks are a modi�
ation of the



19per
eptron. Sin
e the per
eptron 
onstru
ts a linear de
ision fun
tion, NN imple-ment pie
e-wise linear type de
ision fun
tions. A new type of learning method was
onstru
ted by Vapnik and Cortes 
alled The Support Ve
tor Ma
hines [32℄. SVMmethod implements the following idea: It maps input spa
e into some high dimen-sional feature spa
e. Then it 
onstru
ts a linear de
ision surfa
e in this feature spa
ewhi
h 
orresponds to a non-linear de
ision surfa
e in the original input spa
e.Two problems arise in this s
heme: one is 
on
eptual and the other one iste
hni
al. The 
on
eptual problem is how to �nd a separating hyperplane that willgeneralize well. The dimensionality of the feature spa
e will be huge and someseparating planes will not ne
essarily generalize well. The te
hni
al problem is how
omputationally to treat su
h a high dimensional feature spa
e (e.g. if a polynomialdegree of 4 or 5 mapping in 200 dimensional input spa
e is used, SVM may needto 
onstru
t a billion dimensional feature spa
e). Part of the 
on
eptual problemwas solved in 1965 for linearly separable 
ases by the optimal hyperplanes (maximalmargin) method. Cortes and Vapnik [32℄ generalize this for linearly inseparable
ases. In the optimal hyperplane te
hnique, it was shown that if training ve
torsare separated without error, the expe
tation of 
ommitting error for test ve
torsis bounded by the ratio between the expe
tation of the number of support ve
torsand the number of training ve
tors, also 
alled VC dimension. The generalizationability of the learning ma
hine depends on the 
apa
ity of the set of fun
tions,parti
ularly VC dimension of these fun
tions rather than the dimensionality of theinput spa
e. Fun
tions with low 
apa
ity will generalize well on the unseen dataregardless of the dimensionality of the data [99℄. When the 
apa
ity is too large, thetraining dataset 
annot be modeled properly due to the under�tting problem. Onthe other hand, If the 
apa
ity is too small, underlying model will over�t the trainingdataset. Geometri
ally, we 
an explain this phenomenon by large margin 
lassi�ers.The larger 
apa
ity in the set of fun
tions used will result in larger margin (\fat")
lassi�ers. Using a set of fun
tions with low 
apa
ity will yield \skinny" marginswith poor generalization [34℄.Having addressed a solution to the 
on
eptual problem, in 1992 it was shownthat the order of operations for 
onstru
ting a de
ision fun
tion 
an be inter
hanged



20[19℄. The original method required a non-linear transformation of input ve
tors to ahigher dimensional spa
e followed by inner produ
ts with support ve
tors in the highdimensional spa
e. By using 
onvolutions of the inner produ
t in a Hilbert spa
e, thehigh dimensional mapping and inner produ
t 
an be performed in a single operation.The resulting method is 
alled a kernel based method. This type of transformationenables the method to 
onstru
t the ri
h 
lasses of de
ision surfa
es. Cortes andVapnik 
all this type of ma
hine learning Support Ve
tor Ma
hines.Spe
i�
ally, the optimal hyperplane method relies on the transformation of thep-dimensional input ve
tor, xi, into N -dimensional feature ve
tor through a 
hoi
eof N-dimensional ve
tor fun
tion, �, where � : Rp� > RN . An N dimensionalseparator w and a bias, b, is then 
onstru
ted for the set of transformed ve
tors�(xi) = �1(xi); �2(xi); :::; �N(xi) i = 1:::n (2.1)where n is the number of observations (input ve
tors).Classi�
ation of the unknown ve
tor, x, is done by 
he
king the sign of thefun
tion f(x) = w � �(x) + b (2.2)A

ording to the properties of soft margin 
lassi�er method, w 
an be writtenas w = nXi=1 yi�i�(xi) (2.3)where yi is the label of ith input ve
tor, �i is the lagrange multiplier for ith inputve
tor. The linearity of produ
t implies thenf(x) = nXi=1 yi�i�(x)�(xi) + b (2.4)The points xi with �i > 0 are known as support ve
tors, sin
e these are theonly points that in
uen
e the solution. The 
ore of the support ve
tor ma
hines is



21the representation of the inner produ
t as a kernel fun
tion�(u)�(v) � K(u; v): (2.5)The above representation is explained by Hilbert-S
hmidt Theory [96℄: Anysymmetri
 fun
tion K(u; v) with K(u; v) 2 L2 
an be expanded in the formK(u; v) = 1Xi=1 �i�i�i(u)�i(v) (2.6)where �i 2 R and �i are eigenvalues and eigenfun
tionsZ K(u; v)�i(u)du = �i�i(v) (2.7)of the integral operator de�ned by the kernel, K(u; v). The kernel fun
tion 
an besele
ted based on the problem domain, but there is no 
ommon rule for using theright kernel fun
tion. One of the most popular kernel fun
tions is the polynomial
lassi�er degree of d, K(u; v) = (uv + 1)d. SVM with radial basis fun
tion 
an beimplemented by employing the following kernel fun
tionK(u; v) = expf�ku� vk22�2 g: (2.8)It is shown that support ve
tor ma
hines have the ability to generalize well.The SVM method has been applied re
ently to di�erent 
lassi�
ation problemssu

essfully [99℄. A 
omparison of SVM with Gaussian Kernels to Radial BasisFun
tion 
lassi�ers is given in [91℄. The authors 
ompare a K-means GaussianRBF network with an SVM and a hybrid method. The hybrid method �nds 
enterby using SVM and then implements Gaussian RBF network. The hybrid methodperformed best most of the time in their experiments. The similarities betweenSVMs and other linear models su
h as linear dis
riminant, linear per
eptron andother linear models were reported in [52℄. Basi
ally, similarities exist between theobje
tive fun
tions and gradient des
ent algorithms were used to optimize su
hobje
tive fun
tions. These methods also show similarities in the way the duality



22and probabilisti
 interpretations of the s
ores were exploited [52℄.SVM approa
h has been applied to 
onstru
ting de
ision trees by Bennett andBlue. In [7℄, they 
ompare SVM with Global Tree Optimization, a hybrid modelof SVM and GTO and some well known de
ision tree methods su
h as C4.5. Theyreport en
ouraging results for the GTO/SVM method. In most of the experiments,the GTO/SVM method performed the best or very 
lose to the best.The SVM method has not only been applied to 
lassi�
ation problems. In-deed, It has also been adapted to a variety of problems su
h as non-linear prin
ipal
omponent analysis, regression analysis and fun
tional approximation [96℄. The re-sults from this resear
h are promising. Sin
e it is a new resear
h area, there are stillthings need to be done. Kernel PCA and non-linear PCA in feature spa
e are �rstintrodu
ed in [90, 89℄. The 
entral fo
us in kernel PCA is to �nd prin
ipal 
ompo-nents in the higher dimensional feature spa
e rather than to �nd in the input spa
e(linear PCA). The 
hallenging issue in this approa
h is to �nd eigenvalues of thekernelized 
ovarian
e matrix. Algebrai
 de
ompositions are given in [5℄. Althoughthe method is a non-linear PCA, non-linear optimization is never used in any ofthe steps. Sin
e the method does not look for the eigenvalues in the full spa
e, itis 
omputationally 
omparable with the linear PCA. Another advantage of kernelPCA is to �nd the prin
ipal 
omponents in a ri
h and high dimensional featurespa
e. This allows in
luding non-linear terms into the prin
ipal 
omponents [5℄.Other implementations are provided by authors in various arti
les. The im-proving the a

ura
y and speed of SVM is studied by Burges and S
h�olkopf in[26℄. Vapnik, Golowi
h and Smola 
onstru
t mathemati
s behind the fun
tional ap-proximation and regression estimation by using SVM [101℄. They also report someexperimental results on simulated data. Support ve
tor regression ma
hines werestudied by Dru
ker, Burges, Kaufman, Smola & Vapnik in [43℄. There have beenmany other appli
ations of SVM re
ently. Due to the spa
e limitation, we mentionsome of these appli
ations. We will introdu
e semi-supervised learning approa
h inthe next se
tion.
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Figure 2.1: Indu
tive Learning2.5 Semi-supervised Approa
hAlthough the idea of in
orporating unlabeled data into the learning pro
esswith the labeled data goes ba
k to the early 80's [97℄, most of the applied te
hniquesin ma
hine learning deals with the labeled data in supervised learning. The unla-beled data is used in unsupervised learning. But easily available unlabeled data inmany domains (e.g. web-based text data) [74, 67, 18℄ makes us to de�ne a new typeof learning. Be
ause of this, 
ombining labeled and unlabeled data in the learningpro
ess has gotten some attention from ma
hine learning resear
hers.As we stated in Chapter 1, we de�ne semi-supervised learning problem as ause of a training set of the points with known 
lasses and the working set of pointswithout the 
lass labels, 
onstru
ting a 
lassi�er to label the working set. The idea ofin
orporating unlabeled data into supervised learning goes ba
k to late 70s and early80s [97, 100℄. One version of semi-supervised learning is the transdu
tion de�nedby Vapnik [99℄. Unlike the indu
tive learning, transdu
tion in
ludes unlabeled datain a 
lassi�
ation s
heme in the learning phase. As it is depi
ted in Figure 2.1,indu
tive learning �rst, estimates a 
lassi�er fun
tion using labeled data (trainingset) and some prior knowledge about domain, and �nally by using this estimatedfun
tion, we 
lassify unlabeled data in the dedu
tion phase.On the other hand, transdu
tion does not require a 
lassi�er fun
tion estima-tion everywhere. Transdu
tion involves 
ombining both the labeled and unlabeled
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Figure 2.2: Transdu
tive Learningdata with some prior knowledge to estimate the values of the 
lassi�
ation fun
tionat working set points (unlabeled data) [99, 30℄, as depi
ted in Figure 2.2. Thisway of learning is very 
lose to human learning be
ause we often learn things bytaking our experien
es into 
onsideration (labeled data) simultaneously with un-known subje
ts (unlabeled data) to explore and spe
ulate on them. We propose amixed-integer programming model for solving the transdu
tion problem in Chapter4. Possible advantages of using both the labeled and unlabeled data led a group ofresear
hers working on web-based text 
lassi�
ation problem to develop an algorithm
ombination of the naive bayes and Expe
tation-Maximization (EM) algorithms[74, 67, 18℄. The two-step algorithm is outlined in [74℄ as follows:� Build an initial 
lassi�er by 
al
ulating 
lassi�er parameters from the labeleddo
uments only (Naive-Bayes step).� Loop while 
lassi�er parameters 
hange.{ Use the 
urrent 
lassi�er to 
al
ulate probabilisti
ally weighted labels forthe unlabeled do
uments (Expe
tation step).{ Re
al
ulate the 
lassi�er parameters given the probabilisti
ally assignedlabels (Maximization step).



25The algorithm proposed in [74℄ is good parti
ularly in the 
ase of few labeledand many unlabeled data su
h as home page 
ategorization, UseNet newsgroupmessage 
lassi�
ation and Reuters news data. Essentially, labeling these types ofdata is very expensive despite the fa
t that unlabeled data is easily available. EMsteps in this algorithm alternately generate probabilisti
ally weighted labels for theunlabeled do
uments, and a more probable model with a smaller parameter varian
e.The key issue here is that using unlabeled data redu
es the parameter varian
e.Varian
e redu
tion is due to the dependen
e between 
lassi�
ation parameters andthe random variable over the unlabeled data distribution.EM based a
tive learning methods are also 
onsidered as semi-supervisedmethods [67℄. The Query-by-Committee (QBC) method of a
tive learning has beenimplemented in [67℄. Committee members are sampled from training data by theposterior Diri
hlet distribution based on the training data word 
ounts. This 
om-mittee then approximates the entire 
lassi�er distribution. Traditional QBC then
lassi�es unlabeled data and 
omputes disagreement among the 
ommittee mem-bers for ea
h label predi
tion. Finally for labeling requests, it do
uments the pointson whi
h members disagree most. The authors propose to measure 
ommittee dis-agreement for ea
h do
ument using Kullba
k-Leibler (KL) divergen
e to the mean
riterion as opposed to previously employed vote entropy in whi
h ea
h 
ommitteemember votes with probability mass 1=k for its winning 
lass.The KL divergen
e is an information-theoreti
 measure of the di�eren
e be-tween two distributions, 
apturing the number of extra bits of information requiredto send messages sampled from the �rst distribution using a 
ode that is optimal forthe se
ond. The di�eren
e between traditional QBC and this implementation is thatan EM s
heme with unlabeled data is performed after the step of �nding the 
lassi-�er fun
tion based on 
ommittee members and before 
omputing the disagreementamong the members for ea
h unlabeled data point.In [18℄, the authors 
ombine labeled and unlabeled data through 
o-trainingusing a Bayesian network type of 
lassi�er. Co-training �rst �nds weak predi
torsby using the labeled data based on ea
h kind of information (e.g.\resear
h interests"might be a weak predi
tor for a fa
ulty home page). Using the unlabeled data, the



26method generates a bootstrap sample from these weak predi
tors in the followingstep. Finally a Bayesian network 
lassi�er is implemented to 
lassify this bootstrapsample. Authors reported some improvement 
ompared to fully supervised training.Another way of in
orporating the unlabeled data into the learning pro
essis to modify the obje
tive fun
tion, whi
h is optimized within a learning pro
ess.C�ataltepe and Magdon-Ismail [28℄ proposed an augmented error, whi
h has 
ompo-nents from both the labeled and unlabeled data. The authors provide an analyti
alsolution in the 
ase of linear, noisy targets and linear hypothesis fun
tions. Theyalso show some results for the non-linear 
ase.Assume a training set: f(x1; f1); :::; (xn; fn)g and the obje
tive of the learningpro
ess is to 
hoose a hypothesis gv, among a 
lass of hypotheses G, minimizing thetest error over the test set of f(y1; h1); :::; (y`; h`)g. We 
an de�ne training error inthis 
ase: E0(gv) = 1n nXi=1 (gv(xi)� fi)2and test error as: E(gv) = 1̀ X̀j=1(gv(yj)� hj)2:Expanding the test error will give us:E(gv) = 1̀ X̀j=1 g2v(yj)� 2̀ X̀j=1 gv(yj)hj + 1̀ X̀j=1 h2j :Sin
e we 
an not spe
ulate on the true labels of test set, C�ataltepe and Magdon-Ismail then modify this error fun
tion as follows:E(gv) � 1̀ X̀j=1 g2v(yj)� 2n nXi=1 gv(xi)fi + 1n nXi=1 f 2i (2.9)= E0(gv) + 1̀ X̀j=1 g2v(yj)� 1n nXi=1 f 2iBy introdu
ing an augmentation parameter � between 0 and 1, a more general error



27fun
tion, 
alled the augmented error, 
an be de�ned as:E�(gv) = E0(gv) + �( 1̀ X̀j=1 g2v(yj)� 1n nXi=1 f 2i ): (2.10)For � = 0, the augmented error is equivalent to training error E0 and for � = 1
orresponds to Equation 2.9.We summarized related literature in 
lustering, 
lassi�
ation and support ve
-tor ma
hines in this 
hapter. We also reported some work done in the �eld of
ombining labeled and unlabeled data. We now examine the �rst semi-supervisedmethod of this resear
h in the next 
hapter. A GA based semi-supervised 
lusteringmethod is proposed. From both GA and the semi-supervised learning perspe
tives,the proposed method has many innovative features.



CHAPTER 3A Geneti
 Algorithm Approa
h for Semi-supervisedClustering3.1 Introdu
tionIn this 
hapter, in
orporating label information into an unsupervised learningapproa
h is studied. The goal is to group both labeled and unlabeled data intothe 
lusters where ea
h 
luster is as pure as possible in terms of 
lass distributionprovided by the labeled data. The advantage of su
h an approa
h is that it 
anbe used for both indu
tive and transdu
tive inferen
e. Moreover, unsupervisedlearning provides 
apa
ity 
ontrol for 
lassi�
ation. In addition the 
lusters helpalso 
hara
terize segments of the population likely or unlikely to possess the target
hara
teristi
 represented by the label. This additional information 
an be usefulfor several appli
ations. For example, in database marketing only the most pure
lusters of 
ustomer would be in
luded in a marketing 
ampaign and new produ
tsmay be designed to rea
h 
ustomers in marginal 
lusters. The work based on this
hapter is also reported in [39, 38℄.As a base to our semi-supervised algorithm, an unsupervised 
lustering methodoptimized with a geneti
 algorithm is used by in
orporating a measure of 
lassi�-
ation a

ura
y used in de
ision tree algorithms, the GINI index [24℄. Clusteringalgorithms that minimize some obje
tive fun
tion applied to K-
luster 
enters areexamined in this 
hapter. Ea
h point is assigned to the nearest 
luster 
enter byEu
lidean distan
e. The goal is to 
hoose the 
luster 
enters that minimize somemeasure of 
luster quality. Typi
ally a 
luster dispersion metri
 is used. If the meansquare error, a measure of within 
luster varian
e, is used then the problem be
omessimilar to the 
lassi
 K-means 
lustering [58℄. An alternative metri
, the Davies-Bouldin Index (DBI) [36℄ that is a fun
tion of both the within 
luster varian
e andbetween 
luster 
enter distan
es is also examined. By minimizing an obje
tive fun
-tion that minimizes a linear 
ombination of the 
luster dispersion measure and theGini Index, the algorithm be
omes semi-supervised. The details of the problem for-28



29mulation are given in Se
tion 3.2. Sin
e the obje
tive fun
tion is highly nonlinearand dis
ontinuous with many lo
al minima, it is optimized by using the C++ basedgeneti
 algorithm library pa
kage GAlib [102℄.Geneti
 Algorithms (GAs) are well known for being able to deal with 
omplexsear
h problems by implementing an evolutionary sto
hasti
 sear
h. Be
ause ofthis, GAs have been su

essfully applied to a variety of 
hallenging optimizationproblems. The NP-hard nature of the 
lustering problem makes GA a natural
hoi
e for solving it su
h as in [13, 62, 85, 70, 35℄. A 
ommon obje
tive fun
tion inthese implementations is to minimize the square error of the 
luster dispersion:E = KXk=1 Xx2Ck kx�mkk2 (3.1)where K is the number of 
lusters and the variable mk is the 
enter of 
luster Ck.This is indeed the obje
tive fun
tion for the K-means 
lustering algorithms. Thealgorithm proposed in [85℄ modi�es this obje
tive fun
tion by using the inverse ofDavies-Bouldin index de�ned in [36, 58℄ and minimizing it by using evolutionaryprogramming.GAs are also implemented in [70℄ to minimize the fun
tion E (3.1). Genomesare represented by n-bit long strings where n is the number of data points. Ea
h bitin genomes represents 
luster membership. Although proper 
rossover and mutationoperations are de�ned for this s
heme, it is not a s
alable algorithm due to the lengthof the genomes.There are prior studies on 
luster analysis using geneti
 algorithms su
h asan algorithm based on GAs is used for ma
hine vision (pattern re
ognition) in [35℄.The basi
 problem de�ned in [35℄ is to group obje
ts to a �xed number of 
lusters.A new gene representation, Boolean Mat
hing Code (BMC), is de�ned in [35℄ as analternative way to Linear Code (LC) used in [70℄. The basi
 idea in BMC is thatea
h gene represents one 
luster with n binary bits where n is the number of obje
ts.In this 
ase the total size of solution spa
e is 2Kn. Although the size of the solutionspa
e in LC is 2nlogK, BMC rea
hes the 
onvergen
e earlier than LC by utilizingbetter 
rossover and mutation operations. A single gene 
rossover operation was



30proposed in [35℄.Sin
e the proposed algorithm performs transdu
tion using both labeled andunlabeled data in the learning task, there are some substantial di�eren
es betweenthe proposed algorithm in this 
hapter and the algorithms proposed in [85, 70, 35℄.But the 
ore implementation of the GA has some similarities. Re
ently GA 
luster-ing was also implemented in the 
ontext of design and dis
overy of pharma
euti
als[44℄. In Se
tion 3.2, the problem de�nition and the proposed algorithm are given.Details about the GA implementation are given in Se
tion 3.3. Experimental re-sults are given in Se
tion 3.4. A 
omparison with 3-nearest-neighbor and linearand quadrati
 dis
riminant analyses is also reported in Se
tion 3.4. Finally, wesummarize our �ndings in the Se
tion 3.5.Related approa
hes for 
ombining supervised and unsupervised learning exist.For example Learning Ve
tor Quantization (LVQ) [61℄ and Constrained Topologi-
al Maps (CTM) [31℄ also use the approa
h of adapting a primarily unsupervisedmethod to perform 
lassi�
ation. This 
hapter helps address the interesting, but stillopen question, of how well su
h methods 
an exploit the information in unlabeleddata to support transdu
tive inferen
e. Moreover, nearest prototype 
lassi�ers arestudied in [16, 62℄. Sele
ting prototypes from dataset with GA is 
ompared withrandom sele
tion in [62℄.3.2 Problem De�nitionClustering, in general, is de�ned as grouping similar obje
ts together by opti-mizing some similarity measure for ea
h 
luster su
h as within group varian
e. Sin
e
lustering generally works in an unsupervised fashion, it is not ne
essarily guaran-teed to group the same type (
lass) of obje
ts together. In this 
ase, supervisionneeds to be introdu
ed to the learning s
heme through some measure of 
luster im-purity. The basi
 idea is to �nd a set of 
lusters then minimize a linear 
ombinationof the 
luster dispersion and 
luster impurity measures. More spe
i�
ally, sele
tK > 2 
luster 
enters, mk (k = 1; :::; K), that minimize the following obje
tive



31fun
tion: minmk;k=1;::: ;K � � Cluster Dispersion + � � Cluster Impurity (3.2)where � > 0 and � > 0 are positive regularization parameters.If � = 0, then the result is a purely unsupervised 
lustering algorithm. If � = 0the result is a purely supervised algorithm that tries to minimize the 
luster impurity.As in the K-means algorithm, ea
h point is assumed to belong to the nearest 
luster
enter as measured by Eu
lidean distan
e. Ea
h non-empty 
luster is assigned a
lass label 
orresponding to the majority 
lass of points belonging to that 
luster.Two 
luster dispersion measures from the 
lustering literature will be examined:mean square error (see Se
tion 3.2.1) and Davies-Bouldin Index (see Se
tion 3.2.2).It is important to note that for the indu
tion 
ase, 
luster dispersion is based on thelabeled training data. For the transdu
tion 
ase, the 
luster dispersion is based onall available data, both labeled and unlabeled. For the 
luster impurity measure, ameasure of partition quality 
ommon in de
ision tree algorithms, the Gini Index, isused (see Se
tion 3.2.3). Sin
e the obje
tive fun
tion (Eq.3.2) is highly dis
ontinuouswith many lo
al minima, it is optimized by using the geneti
 algorithm library(see Se
tion 3.3) GAlib. When a solution is found, it might 
ontain 
lusters withlittle or no points assigned to them. These 
lusters are deleted and relevant pointsare reassigned to their nearest 
luster 
enters. Pra
ti
al details of this algorithmare dis
ussed in the 
omputational results se
tion (see Se
tion 3.4). The resultingalgorithm 
an be summarized as follows:Algorithm 3.2.1. Semi-supervised 
lustering algorithm� Within geneti
 algorithm:1. Determine 
luster 
enters2. Partition the labeled data by distan
e to 
losest 
luster 
enter.3. Find non-empty 
lusters, assign a label to non-empty 
lusters by majority
lass vote within them.4. Compute dispersion and impurity measures:



32{ Indu
tion: Use labeled data.{ Transdu
tion: Use labeled + unlabeled data.� Prune 
lusters with few members.� Reassign the points to �nal non-empty 
lusters.3.2.1 First Dispersion Measure: MSEThe average within 
luster varian
e is frequently used in 
lustering te
hniquesas a measure of 
luster quality. Commonly known as the mean square error (MSE),this quantity is de�ned as:MSE = 1n KXk=1 Xx2Ck kx�mkk2; (3.3)where n is the number of points, K is the number of 
lusters, and mk is the 
enterof 
luster Ck. The K-means algorithm minimizes the MSE obje
tive.3.2.2 Se
ond Dispersion Measure:DBIThe Davies-Bouldin index is used as an alternative to MSE. DBI is determinedas follows [58℄ : Given a partition of the n points into K 
lusters, one �rst de�nesthe following measure of within-to-between 
luster spread for two 
lusters, Cj andCk for 1 � j; k � K and j 6= k. Rj;k = ej + ekDjk ; (3.4)where ej and ek are the average dispersion of Cj and Ck, and Djk is the Eu
lideandistan
e between Cj and Ck. If mj and mk are the 
enters of Cj and Ck, thenej = 1nj Xx2Cj kx�mjk2 (3.5)and Djk = kmj �mkk2, where mj is the 
enter of 
luster Cj 
onsisting of nj points.The term Rk for ea
h Ck is de�ned as
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Rk = maxj 6=kRj;k: (3.6)Now the DBI is de�ned as: DB(K) = 1=K KXk=1 Rk (3.7)The DBI 
an be in
orporated into any 
lustering algorithm to evaluate a par-ti
ular segmentation of data. The DBI takes into a

ount 
luster dispersion andthe distan
e between 
luster means . Well separated 
ompa
t 
lusters are preferred.The DBI favors small numbers of 
lusters. Optimizing the DBI frequently eliminates
lusters by for
ing them to be empty.3.2.3 Impurity Measure: Gini-IndexThe Gini index has been used extensively in the literature to determine theimpurity of a 
ertain split in de
ision trees [24℄. Usually, the root and intermediatenodes are partitioned to two 
hildren nodes. In this 
ase, left and right nodes willhave di�erent Gini index values. If any split redu
es the impurity, the de
ision treeat that node is partitioned further and the de
ision rule whi
h yields the minimumimpurity is sele
ted. Clustering using K 
luster 
enters partitions the input spa
einto K regions. Therefore 
lustering 
an be 
onsidered as a K-nary partition at aparti
ular node in a de
ision tree, and the Gini index 
an be applied to determinethe impurity of su
h a partition. In this 
ase, Gini Index of a 
ertain 
luster is
omputed as: GiniPj = 1:0� 
Xi=1 (Pjinj )2 j in 1; :::; K (3.8)where 
 is the number of 
lasses and Pji is the number of points belong to ith 
lassin 
luster j. nj is the total number of points in 
luster j. The impurity measure of



34a parti
ular partitioning into K 
lusters is:impurity = PKj=1 TPj �GiniPjn (3.9)where TPj is the probability of a point belonging to 
luster j and n is the numberof points in the dataset.Preliminary experiments indi
ated that the Gini index is generally preferableover other impurity measures su
h as the number of mis
lassi�ed points. If thesimple number of mis
lassi�ed points is used, then the mis
lassi�ed points maybe distributed evenly throughout all the 
lusters. The Gini Index favors solutionswith pure 
lusters even at the expense of total 
lassi�
ation error. Other de
isiontree splitting 
riterion su
h as Information Gain 
ould also be used for the 
lusterimpurity measure [78℄.3.3 Geneti
 Representation and AlgorithmThe obje
tive fun
tion (Eq. 3.2) de�ned in the previous se
tion is dis
ontin-uous and non-
onvex. Finding an optimal solution to this problem is extremelydiÆ
ult, so heuristi
 sear
h is desirable. Heuristi
 sear
h approa
hes su
h as geneti
algorithms (GA), evolutionary programming, simulated annealing and tabu sear
hhave been used extensively in the literature to optimize related problems. Geneti
algorithm approa
h is utilized be
ause the obje
tive fun
tion de�ned 
an be readilyused as a �tness fun
tion in the GA. The authors in [85, 70, 35℄ used their own
ustomized GAs for 
lustering. As opposed to developing a geneti
 algorithm froms
rat
h, a general purpose GA library, GAlib [102℄, is 
ustomized by utilizing the
oating-point representation and Goldberg's simple GA approa
h [50℄. This algo-rithm uses non-overlapping populations. In ea
h generation, the algorithm 
reatesan entirely new population of individuals by sele
ting from the previous populationthen mating to produ
e the new o�spring for the new population. This pro
ess 
on-tinues until stopping 
riteria have been met. An elitist strategy was applied whi
hallows the best individual to pass to the new generation.In a geneti
 algorithm appli
ation major 
on
erns are genome representa-



35tion, initialization, sele
tion, 
rossover and mutation operators, stopping 
riteriaand most importantly the �tness fun
tion. The obje
tive fun
tion (Eq.3.2), de�nedabove, is dire
tly used as the �tness fun
tion without any s
aling. The genomerepresentation 
onsists of an array of Kp real numbers, where p is the number ofdimensions in the data and K is the number of 
lusters. Ea
h set of p numbers rep-resents one 
luster 
enter. This type of representation brings several advantages overprior dis
rete representation of 
luster membership. First, 
luster memberships areassigned based on Eu
lidean distan
e metri
 in this 
ase instead of assigning thembased on the values of genome. Se
ond, ea
h genome requires less sear
h spa
e thanprevious appli
ations for the large datasets, sin
e the length of the genomes dependsonly on the number of 
lusters (K) and the dimensionality (p) of the dataset, notthe number of data points. It is therefore possible to handle the large datasets withthis representation.Default geneti
 operators de�ned for GARealGenome 
lass in GAlib were ap-plied. A mutation with Gaussian noise is the default in this 
ase. Uniform 
rossoverwas applied as the default 
rossover operation. Although the uniform initializeris used by default, the population was initialized by sampling from the data. Auniform sele
tion rule was used for sele
ting mating individuals (parents).Two stopping 
riteria were applied . The algorithm stops when either of themis satis�ed. One of these 
riteria is the maximum number of generations. The otherone is the 
onvergen
e after a 
ertain number of 
onse
utive generations.The geneti
 algorithm yields reasonable results for both indu
tion and trans-du
tion problems. The experimental �ndings are summarized in the next se
tion.3.4 Experimental ResultsThe goals in this 
omputational approa
h are to determine if 
ombining su-pervised and unsupervised learning approa
hes te
hniques 
ould lead to improvedgeneralization, and to investigate if performing transdu
tive inferen
e using unla-beled data for training 
ould lead to improvements over indu
tive inferen
e. Ex-perimental study is done with eight datasets from the UC-Irvine Ma
hine Learning



36Repository [68℄1. The datasets have all originally two-
lass output variable ex
eptHousing. The output variable for this dataset was 
ategorized at the level of 21.5.Ea
h dataset was divided into three subsets after a standard normalization. Thesesubsets are 
alled the training, testing and working sets. Currently 40% of data is fortraining, 30% is for testing and remaining 30% is for working sets. For ea
h dataset,two s
enarios have been tested to understand the di�eren
e between indu
tive andtransdu
tive inferen
es. For indu
tive inferen
e, the algorithm is applied to labeledtraining data and then tested on the test data. For transdu
tive inferen
e, the al-gorithm is applied to labeled training data, unlabeled working data, and unlabeledtest data, and then tested on the test data.Results from seven di�erent �tness fun
tions are reported. The two di�erent
luster dispersion measures, MSE (Eq.3.3) and Davies-Bouldin Index (Eq.3.7), areapplied to indu
tion in a 
ompletely unsupervised mode (� = 1; � = 0) and semi-supervised mode (� > 0; � > 0), and transdu
tion in a semi-supervised mode (� >0; � > 0). We also tried the 
ompletely supervised 
ase based on only the Gini index(� = 0; � = 1). For transdu
tion, both the 
luster dispersion measure and the Giniindex are based on the labeled and unlabeled data. In transdu
tion, the Gini index(Eq.3.8) be
omes: GiniPj = 1:0� 
Xi=1 (Pjin̂j )2 j in 1; :::; K (3.10)n̂j is equal to number of labeled and unlabeled points in 
luster j.The best parameter set for the problem was pi
ked by trial and error. We usesame set of GA parameters for ea
h dataset. The maximum number of generationsis 500, mutation probability is 0.01, probability of 
rossover is 0.95, and numberof generations to 
onverge is 50. Ea
h generation 
onsists of 50 
ompeting genes.Experiments are 
ondu
ted based on 10 bootstrap samples. For brevity only theaverage testing set error results are reported here. A paired t-test was used toassess the signi�
an
e of di�eren
e of the testing set errors within a dataset. Errors1The datasets and their 
orresponding sizes are: Bright(14 variables, 2462 points),Sonar(60,208), Cleveland Heart(13,297), Ionosphere(34,351), Boston Housing(13,506), House Votes(16,435), Breast Can
er Prognosis(30,569), and Pima Diabetes (8,769)



37with a p-value less than 0.2 were 
onsidered signi�
ant. To insure that the weakerperforman
e of MSE was not based on poor 
hoi
e of parameters, (K; �; �) for ea
hdataset were 
hosen based on trials with the indu
tive MSE with Gini index2 Forthe DBI based results, the same values of K were used for ea
h dataset, and the�xed values of � = 0:01 and � = 0:1 were used for all datasets.3.4.1 First Dispersion Measure:MSEThe results using the �rst dispersion measure, MSE, are reported in Table3.1. The �rst 
olumn, MSE-only, indi
ates how the totally unsupervised approa
hof 
lustering based on only the unlabeled training data would perform. The se
ond
olumn, GINI-only shows how the 
ompletely supervised approa
h of 
lusteringusing the GINI index on the labeled training data performs. The third 
olumn isthe proposed approa
h using both the MSE and GINI based on the labeled trainingdata. The forth 
olumn indi
ates how MSE+GINI performs transdu
tive inferen
ewhen all the available data is used. A bold number is the minimum error for a givendataset, an itali
 number indi
ates that the result is signi�
antly di�erent from thetransdu
tion result. The totally unsupervised MSE-only approa
h always performssigni�
antly worse than any of the supervised methods. Surprisingly, the GINI-only 
omplete supervised approa
h was the best on four of the eight datasets. Thetransdu
tive MSE+GINI method based on all available data showed no 
onsistentimprovements over the indu
tion approa
h. This is 
onsistent with other resear
herswho have reported that doing transdu
tive inferen
e using a regression estimatewhere the varian
e estimate was based on all the available data (both labeled andunlabeled) a
tually degraded results [20℄.The MSE based approa
hes showed poor performan
e. To examine why 
on-sider the results of the MSE-based �tness fun
tions on the 
artoon example shownin Figure 3.1. The top plot shows the indu
tion result (using just labeled data) andthe bottom plot shows the transdu
tion result (using both labeled and unlabeleddata) 
ases. Note that on the 
enter 
luster transdu
tion does work appropriately.2The (k; �; �) values applied for ea
h dataset were bright (15, 0.01,0.99), sonar (7,0.1,1),heart (7,0.25,0.75), ionosphere (7, 0.01,0.99), house (7,0.1,0.9), housing (11,0.01, 0.99), progno-sis (11,0.4,0.6), and pima (11,0.01,0.99).



38The indu
tive MSE+GINI method does not separate the 
luster in the 
enter of the�gure, be
ause su
h separation will result an impure 
luster on the right. Using theadditional unlabeled data, the transdu
tive MSE+GINI redu
es 
luster dispersionby splitting the 
enter 
luster (bottom of Figure 3.1). On the other hand, boththe transdu
tive MSE+GINI method does not 
at
h the downward shift of the topright 
luster. Be
ause the added unlabeled points are roughly equal distan
e fromtwo top right 
luster 
enters, adding unlabeled data has little e�e
t despite the fa
tthat a natural gap exits between the two 
lusters. The MSE minimizes only the
ompa
tness of the 
lusters. It is ne
essary to �nd 
lusters that are both 
ompa
tand well separated. The DBI index is mu
h more e�e
tive in this regard and the
omputational results are greatly improved when this 
luster dispersion metri
 isapplied.3.4.2 Se
ond Dispersion Measure:DBIThe DBI dispersion measure was mu
h more e�e
tive than the MSE withregards to transdu
tion. For the 
artoon example, the top of the Figure 3.2 showsthe resulting partition after using DBI in �tness fun
tion for the indu
tion 
ase.By using DBI, the method was able to 
at
h the verti
al shift within the datain transdu
tive inferen
e. The results for the DBI dispersion measure (Eq.3.7) onthe UC-Irvine Data are reported in Table 3.2. The same experimental setup andparameters as mentioned above were used ex
ept that the maximum number ofgenerations was set to 300. The same K was used as in MSE approa
h, but theregularization parameters were 
hanged due to the di�erent magnitude of the DBI.As a purely unsupervised approa
h DBI-only was even worse than MSE-only at
lassi�
ation. The indu
tive DBI+GINI approa
h was not signi�
antly di�erentfrom the GINI-Only approa
h. The transdu
tive DBI+GINI was either better or notsigni�
antly worse than GINI-only approa
h. Transdu
tive DBI+GINI 
onsistentlyprodu
ed the best 
lassi�
ation results of all the seven approa
hes tested primarilydue to the more 
ompa
t and better separated 
lusters found by DBI over MSE.The eviden
e indi
ates that 
apa
ity 
ontrol based on both labeled and unlabeleddata is mu
h more e�e
tive using the DBI 
riterion than MSE.
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41Another �nding from the results is that DBI dispersion measure favors a fewernumber of non-empty 
lusters 
ompared to the MSE dispersion measure. On av-erage, using DBI dispersion measure resulted in 53.33%, 33.33%, 28.36%, 17.91%,30.84%, 33.33%, 51.11% and 50.91% fewer non-empty 
lusters than MSE dispersionmeasure for transdu
tive inferen
e on the UCI datasets respe
tively.In Table 3.3, results from some other 
lassi�
ation te
hniques are 
omparedwith transdu
tive DBI+GINI { spe
i�
ally 3-nearest-neighbor 
lassi�er, linear andquadrati
 dis
riminant 
lassi�ers. The dis
riminant analysis was done using theSAS pro
edure DISCRIM [86℄. All results are reported on the test datasets. TheDBI-GINI is 
onsistently one of the better methods.3.5 Con
lusionA novel method for semi-supervised learning that 
ombines aspe
ts of super-vised and unsupervised learning te
hniques has been introdu
ed in this 
hapter.The basi
 idea is to take an unsupervised 
lustering method, label ea
h 
luster withthe 
lass membership, and simultaneously optimize the mis
lassi�
ation error of theresulting 
lusters. The intuition behind this approa
h is that the unsupervised 
om-ponent of the obje
tive fun
tion a
ts as a form of regularization or 
apa
ity 
ontrolduring supervised learning to avoid over�tting. The obje
tive fun
tion now is alinear 
ombination of a measure of 
luster dispersion and a measure of 
luster impu-rity. The method 
an exploit any available unlabeled data during training sin
e the
luster dispersion measure does not require 
lass labels. This allows the approa
hto be used for transdu
tive inferen
e, the pro
ess of 
onstru
ting a 
lassi�er usingboth the labeled training data and the unlabeled test data. Experimental resultsalso show that using Davies-Bouldin Index for 
luster dispersion instead of MeanSquare Error improves transdu
tive inferen
e. This is due to the 
ompa
t and wellseparated 
lusters found by minimizing DBI. DBI �nds solution using mu
h fewer
lusters than MSE with mu
h greater a

ura
y. The basi
 ideas in this 
hapter:in
orporating 
lassi�
ation information into an unsupervised algorithm and usingthe resulting algorithm for transdu
tive inferen
e are appli
able to many types ofunsupervised learning and are promising areas of future resear
h.



42Table 3.1: Results Using MSE in Fitness Fun
tionIndu
tion Transdu
tionData Set MSE-Only GINI-Only MSE+GINI MSE+GINIBright 0.06585 0.01084 0.02507 0.02263Sonar 0.43279 0.2541 0.22951 0.26066Heart 0.23636 0.21477 0.2 0.19659Iono. 0.25673 0.14423 0.12788 0.12981Housing 0.25828 0.15629 0.18874 0.16887House 0.09846 0.06692 0.06 0.06308Prognos. 0.1 0.05059 0.06235 0.05235Pima 0.32402 0.27118 0.30131 0.30393Indu
tion Transdu
tionData Set DBI-Only GINI-Only DBI+GINI DBI+GINIBright 0.26897 0.01084 0.01992 0.01165Sonar 0.50656 0.2541 0.27049 0.23771Heart 0.3841 0.21477 0.21136 0.19155Iono. 0.34327 0.14423 0.12885 0.13558Housing 0.4563 0.15629 0.17086 0.15497House 0.11769 0.06692 0.07462 0.06923Prognos. 0.38059 0.05059 0.04941 0.04353Pima 0.34585 0.27118 0.28428 0.28122Table 3.2: Results Using DBI in Fitness Fun
tionData Set 3-NN LinDis
 QuadDis
 DBI+GINIBright 0.01247 0.02387 0.02112 0.01165Sonar 0.2098 0.38025 0.35256 0.23771Heart 0.19773 0.1745 0.22334 0.19155Iono. 0.18846 0.14624 0.1294 0.13558Housing 0.16291 0.16013 0.19946 0.15497House 0.06154 0.0414 0.06995 0.06923Prognos. 0.04235 0.04797 0.05348 0.04353Pima 0.28777 0.2313 0.26401 0.28122Table 3.3: Comparison between Transdu
tive DBI+GINI and 3-NN, LD,and QD



43The supervised 
lustering method dis
ussed in this 
hapter 
an also be general-ized to regression problems. One 
ould also implement s
aling for variable sele
tion.For ea
h variable, a gene must be introdu
ed to represent the s
aling fa
tor. S
aling
an be either implemented within the same genome or using another genome fors
aling fa
tors within the GA.In the next 
hapter we fo
us on developing 
apa
ity 
ontrol te
hniques forsupervised learning by in
orporating unlabeled data into supervised learning taskbased on Support Ve
tor Ma
hines.



CHAPTER 4Optimization Approa
hes to Semi-Supervised Learning4.1 Introdu
tionThe fo
us of this 
hapter is mathemati
al programming approa
hes to semi-supervised learning for 
lassi�
ation tasks based on SVMs. The main idea of semi-supervised learning is to 
onstru
t a 
lassi�er using both a training set of labeleddata and a working set of unlabeled data. If none of the labels are known then theproblem be
omes 
lustering. If some of the labels are known, then the problem is
lassi�
ation. This 
hapter is based on the work reported in [9, 37℄.There are many pra
ti
al domains in whi
h unlabeled data are abundant butlabeled data are expensive to generate and therefore relatively s
ar
e (e.g. medi
aldiagnosis, web sear
h, drug design, and database marketing). When the train-ing data 
onsist of relatively few labeled data points in a high-dimensional spa
e,something must be done to prevent the 
lassi�
ation or regression fun
tion fromover�tting the training data. The key idea is that by exploiting the unlabeled datawe hope to be able to provide additional information about the problem that 
anbe used to improve a

ura
y on data with unknown labels (generalization) through
apa
ity 
ontrol with unlabeled data.By in
luding the unlabeled data in the testing set (working set), semi-supervisedlearning 
an be used to perform transdu
tive learning instead of typi
al indu
tivelearning. In indu
tion, the task is to 
onstru
t a good dis
riminant fun
tion valideverywhere. This fun
tion is �xed and applied to any future test data (Figure 2.1).In transdu
tion, the labeled training data and unlabeled testing data are given,then the dis
riminant fun
tion is 
onstru
ted based on all the available data. Thelearning task is to predi
t the labels of only those spe
i�
 test data points, not allpossible future points. This simpler task 
an result in theoreti
ally better boundson the generalization error [99℄, thus redu
ing the amount of required labeled datafor good generalization (Figure 2.2).For semi-supervised SVM we 
onsider all possible labels of the test data and44



45assign the labels that produ
e the best SVM with maximum margin based on allthe available data, both labeled and unlabeled. For the purpose of this 
hapter welimit our dis
ussion to linear SVM, but these methods 
an be extended to nonlin-ear support ve
tor ma
hines using the standard SVM approa
h of in
luding kernelfun
tions [99, 65℄. In Se
tion 4.2, we review SVMs to give foundation to developsemi-supervised methodology. In Se
tion 4.3 we provide a general framework forviewing the semi-supervised support ve
tor ma
hine problem. Depending on howwe penalize unlabeled data appearing in the margin the problem 
an be formulatedas a linear or 
onvex quadrati
 program with additional equilibrium 
onstraints,mixed-integer 
onstraints, or non
onvex obje
tive terms. In Se
tion 4.4 we exam-ine pra
ti
al approa
hes using the linear mixed integer program (MIP) formulation�rst introdu
ed in [9℄. By in
orporating the MIP within a lo
al learning framework,performan
e is greatly enhan
ed. In Se
tion 4.5 we examine pra
ti
al algorithms fora non
onvex quadrati
 formulation. Finally, we 
on
lude this 
hapter with a briefsummary and dis
ussion of optimization issues in semi-supervised learning.Other resear
hers have reported favorable results on semi-supervised methodson web-based text 
lassi�
ation problems, for example using an EM (Expe
tation-Maximization) [74, 67℄, 
o-training in Bayesian networks [18℄, and a transdu
tiveversion of SVM-Light [60℄. Cataltepe and Magdon-Ismail [28℄ propose augmentederror, whi
h has 
omponents from both labeled and unlabeled data. They provide ananalyti
al solution in the 
ase of linear, noisy targets and linear hypothesis fun
tions.They also show some results for the non-linear 
ase. Theoreti
al results exist [27℄on the relative value of labeled and unlabeled data.4.2 Review of SVM Problem FormulationThe underlying problem of interest is to estimate a 
lassi�
ation fun
tion f :Rp ! f�1g using input-output training data from two 
lasses(x1; y1); : : : ; (xn; yn) 2 Rp � f�1g: (4.1)
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PSfragrepla
ementsClass 1

Class -1 w � x = b� 1w � x = b+ 1w � x = b
2kwk2+o

Figure 4.1: Optimal Plane Maximizes MarginThe fun
tion f should 
orre
tly or almost 
orre
tly 
lassify unseen examples (x; y),i.e. f(x) = y if (x; y) is generated from the same underlying probability distributionas the training data. In this se
tion we limit dis
ussion to linear 
lassi�
ationfun
tions. If the points are linearly separable, then there exist an p-ve
tor w ands
alar b su
h that w � xi � b � 1 if yi = 1; andw � xi � b � �1 if yi = �1; i = 1; : : : ; n (4.2)or equivalently yi[w � xi � b℄ � 1; i = 1; : : : ; n: (4.3)The \optimal" separating plane, w � x = b, is the one that is furthest from the
losest points in the two 
lasses. Geometri
ally this is equivalent to maximizing theseparation margin or distan
e between the two parallel planes w � x = b + 1 andw � x = b� 1 (see Figure 4.1).The \margin of separation" in Eu
lidean distan
e is 2= kwk2 where kwk2 =pPpi=1w2i is the 2-norm. To maximize the margin, we minimize kwk2 =2 subje
tto the 
onstraints (4.3). A

ording to stru
tural risk minimization, for a �xedempiri
al mis
lassi�
ation rate, larger margins should lead to better generalizationand prevent over�tting in high-dimensional attribute spa
es [98℄. The 
lassi�er is
alled a support ve
tor ma
hine be
ause the solution depends only on the points(
alled support ve
tors) lo
ated on the two supporting planes w � x = b � 1 andw � x = b+ 1.



47In general the 
lasses will not be linearly separable, so the generalized optimalplane problem (4.4) [32, 98℄ is used. A sla
k term �i is added for ea
h point su
hthat if the point is mis
lassi�ed, �i � 1. The quadrati
 programming formulation is(SVM-QP): minw;b;� C nXi=1 �i + 12 kwk2s:t: yi[w � xi � b℄ + �i � 1�i � 0; i = 1; : : : ; n (4.4)
where C > 0 is a �xed penalty parameter. The 
apa
ity 
ontrol provided by themargin maximization 
an greatly improve generalization [100, 97℄. Typi
ally, thefollowing dual form of (4.4) is solved in pra
ti
e:min� 12 nXi=1 nXj=1 yiyj�i�jxi � xj � nXi=1 �is:t: nXi=1�iyi = 00 � �i � C i = 1; : : : ; n (4.5)

The Robust Linear Programming approa
h to SVM is identi
al to SVM-QPex
ept the margin term is 
hanged from the 2-norm kwk2 to the 1-norm, kwk1 =Ppj=1 jwjj. The problem be
omes the following robust linear program (SVM-RLP)[11, 21, 8℄: minw;b;s;� C nXi=1 �i + pXj=1sjs:t: yi[w � xi � b℄ + �i � 1�i � 0; i = 1; : : : ; n�sj <= wj <= sj; j = 1; : : : ; p: (4.6)
The RLP formulation is a useful variation of SVM with some ni
e 
hara
teris-ti
s. The 1-norm weight redu
tion still provides 
apa
ity 
ontrol. The results in [64℄
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an be used to show that minimizing kwk1 
orresponds to maximizing the separa-tion margin using the in�nity norm. Statisti
al learning theory 
an be extended toin
orporate alternative norms. For example, an adaptive weighted eu
lidian normis implemented in the stru
tural risk minimization framework [94℄. One major ben-e�t of SVM-RLP over SVM-QP is dimensionality redu
tion. Both SVM-RLP andSVM-QP minimize the magnitude of the weights w. But SVM-RLP for
es moreof the weights to be 0 due to the properties of the 1-norm. This results in dimen-sionality redu
tion sin
e variables with 0 weights 
an be removed from the model.Another bene�t of SVM-RLP over SVM-QP is that it 
an be solved using linearprogramming instead of quadrati
 programming.SVMs are easily generalized to nonlinear dis
riminants through the intro-du
tion of kernel fun
tions [99, 65℄. The basi
 idea is that the data are mappednonlinearly to a higher dimensional spa
e and a linear SVM is 
onstru
ted in thetransformed spa
e 
orresponding to a nonlinear 
lassi�er in the original spa
e. Welimit our formulation to the linear 
lassi�
ation problem in this se
tion and leave
omputational studies of these approa
hes extended with kernels to later se
tions.4.3 Semi-supervised SVMOur semi-supervised support ve
tor ma
hine approa
h 
an be illustrated by asimple example. Consider the two-
lass problem shown in Figure 4.2(a). Sin
e thelabeled training sets are linearly separable, there exists an in�nite number of possibleseparating planes that 
orre
tly 
lassify the two sets. Intuitively, the best linear
lassi�er is the middle plane shown that separates the two sets with the greatestmargin. The margin is the sum of distan
es from the 
losest points (the supportve
tors) in ea
h set to the plane or equivalently the distan
e between the supportingplanes for ea
h set. The supporting planes are shown using dotted lines. Statisti
alLearning Theory proves that for a given mis
lassi�
ation error, maximizing themargin of separation minimizes a bound on the expe
ted mis
lassi�
ation erroron future unseen data [99℄. Maximizing the margin redu
es the 
apa
ity of thefun
tion to �t data. Intuitively, a \fat" plane with wide margin has less 
apa
ityto �t data than a \skinny" one. In SVM, the optimal plane 
an be found using
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(a) Indu
tion - train (b) Indu
tion - test

(
) Transdu
tionFigure 4.2: Traditional SVM (a, b) versus Semi-Supervised SVM (
)quadrati
 or linear programming depending on the metri
 used to measure themargin distan
e [99, 98, 4℄. Consider now the additional unlabeled test data shownin Figure 4.2(b). The SVM performs poorly on this parti
ular test set in terms of
lassi�
ation a

ura
y of the testing data. Note also that the resulting margin forthe 
ombined labeled training data and unlabeled testing data is very small. If we
onstru
t the SVM margin that 
orre
tly 
lassi�es the training data and a
hievesthe widest margin based on all the data, the results found by our semi-supervisedSVM are signi�
antly improved and the preferable plane is shown in Figure 4.2(
).Results in statisti
al learning theory show that, for a �xed mis
lassi�
ation error,maximizing the margin based on all the data (train and test) 
an lead to betterbounds on the expe
ted generalization error [99℄.The basi
 idea of semi-supervised support ve
tor ma
hines is that we want thebest support-ve
tor ma
hine on the labeled data that has no or very few unlabeledpoints in the margin. Thus we want to penalize the support ve
tor ma
hine if



50unlabeled points fall in the margin. Spe
i�
ally, we de�ne the semi-supervisedsupport ve
tor ma
hine problem (S3VM) as:minw;b;�;�;z C " nXi=1 �i + n+X̀j=n+1 g(w � xj � b)#+ k w ks:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; n (4.7)where C > 0 is a �xed mis
lassi�
ation penalty parameter and g(�) is themargin penalty fun
tion on unlabeled data xj j = n + 1; : : : ; n+ ` .The question then is how to de�ne g. For a hard margin approa
h in whi
h nounlabeled points are allowed in the margin, the margin penalty fun
tion is de�nedas g1(�) := 1 for � 1 < � < 10 otherwise (4.8)If an unlabeled point falls outside the margin, it is 
onsidered well-
lassi�ed and nopenalty is in
urred.We 
an transform the hard margin g1 problem into a linear or quadrati
program with an additional equilibrium 
onstraint. We start with either SVM for-mulation, (4.4) or (4.6), and then add two 
onstraints for ea
h point in the workingset. One 
onstraint 
al
ulates the mis
lassi�
ation error as if the point were in 
lass1 and the other 
onstraint 
al
ulates the mis
lassi�
ation error as if the point werein 
lass �1. We add a 
onstraint that for
es one of the two mis
lassi�
ation er-rors per point to be zero. This produ
es the following mathemati
al programmingproblem with equilibrium 
onstraints:
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minw;b;�;�;z C " nXi=1 �i#+ k w ks:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b + �j � 1 �j � 0 j = n+ 1; : : : ; n+ `�(w � xj � b) + zj � 1 zj � 0�j � zj = 0 j = n+ 1; : : : ; n+ ` (4.9)

The requirement that no unlabeled points may fall in the margin may be toostrong. A natural relaxation of the problem would be to move the equilibrium
onstraint into the obje
tive and use it as the margin penalty fun
tion g. Thisresults in the following non
onvex quadrati
 optimization problem:minw;b;�;�;z C " nXi=1 �i + n+X̀j=n+1 �j � zj#+ k w ks:t: yi(w � xi + b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b+ �j � 1 �j � 0 j = n+ 1; : : : ; n + `�(w � xj � b) + zj � 1 zj � 0 (4.10)
Close examination of this 
hoi
e of error fun
tion shows that it has attra
tiveproperties. If the unlabeled point xj falls outside or on the margin then �j or zj is 0,and there is no error asso
iated with that point. If the point falls in the margin, thenfor 
 = w � xj � b, �j = 1� 
 and zj = 1 + 
 by 
onstru
tion of the support ve
torma
hine. The following pie
ewise quadrati
 margin penalty fun
tion is produ
ed(see Figure 4.3(a)): g2(
) := 1� 
2 for � 1 < 
 < 10 otherwise: (4.11)Another natural 
hoi
e would be a margin penalty fun
tion that 
al
ulatesthe minimum of the two possible mis
lassi�
ation errors. The �nal 
lass of a point
orresponds to the one that results in the smallest error. This is the transdu
tive



52

(a) g2(
) (b) g1(
)Figure 4.3: Margin Penalty Fun
tionsidea as proposed by Vapnik [99℄. It has the advantage that if the 
orre
t labels arefound, the resulting SVM will be identi
al to the one produ
ed if the points wereknown. The minimum error formulation is [9℄:minw;b;�;�;z C " nXi=1 �i + n+X̀j=n+1min(�j; zj)#+ k w ks:t: yi(w � xi + b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b+ �j � 1 �j � 0 j = n+ 1; : : : ; n + `�(w � xj � b) + zj � 1 zj � 0 (4.12)
The resulting margin penalty fun
tion is shown in Figure 4.3(b)g(
) = g1(
) := 1� j
j for � 1 < 
 < 10 otherwise (4.13)For our experimental study of pra
ti
al methods for solving these problems wefo
used on the minimum error formulation (4.12). But this is not to say that otherformulations are not possible or preferable. In the next two se
tions we explore twodi�erent approa
hes to pra
ti
ally solving this problem.



534.4 Mixed-Integer Programming FormulationInteger programming 
an be used to exa
tly solve S3VM (4.12). The basi
idea is to add a 0 or 1 de
ision variable, dj, for ea
h point xj in the working set.This variable indi
ates the 
lass of the point. If dj = 1 then the point is in 
lass1 and if dj = 0 then the point is in 
lass �1. This results in the following mixedinteger program (S3VM-MIP):minw;b;�;�;z;d C " nXi=1 �i + n+X̀j=n+1(�j + zj)#+ k w k1s:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b + �j +M(1� dj) � 1 �j � 0 j = n+ 1; : : : ; n+ `�(w � xj � b) + zj +Mdj � 1 zj � 0 dj = f0; 1g (4.14)
The 
onstant M > 0 is 
hosen suÆ
iently large su
h that if dj = 0 then �j = 0 isfeasible for any optimal w and b. Likewise if dj = 1 then zj = 0. In this 
hapter,we use the 1-norm of w in the obje
tive.A globally optimal solution to this problem 
an be found using CPLEX or other
ommer
ial mixed integer programming 
odes [33℄ provided 
omputer resour
es aresuÆ
ient for the problem size. Using the mathemati
al programming modelinglanguage AMPL [47℄, we were able to model S3VM easily and solve it using CPLEX.One pra
ti
al limitation of this approa
h is the 
apa
ity of the MIP solver used.Using CPLEX 4.0 on a Sun Ultra 1 with 700MB RAM we found it was pra
ti
al toin
lude at most 50 unlabeled data points due to the CPU time limitation.4.4.1 Lo
al Semi-Supervised Support Ve
tor Ma
hinesTo get around the pra
ti
al restri
tion on the number of integer variables andthus unlabeled data 
an be handled by our MIP solver, we utilized the S3VM-MIPas part of a lo
al learning algorithm. In lo
al learning, a point is 
lassi�ed based onpoints in its \neighborhood". For example, in the K-Nearest-Neighbor algorithm(K-NN), the K nearest neighbors to a point (by Eu
lidean distan
e or some othermetri
) are found and then the point is assigned the majority 
lass of the K nearestneighbors. Lo
al learning methods are often 
alled memory-based methods, be
ause



54training examples are kept in \memory" and used to 
lassify new points. Sin
e thelo
al models have fewer training examples, it takes mu
h less 
omputational timeto optimize ea
h lo
al S3VM than to train one global one at the expense of manylo
al models. Previous empiri
al studies have shown that the generalization abilityof lo
al methods often ex
eeds that of global ones sin
e the lo
al models in
ludeonly the points whi
h are related to the query point (interested unlabeled data) ina given learning task. Many variations exist for both sele
ting the neighborhoodsand determining the output 
lass based on the neighbor. For example, Dis
riminantAdaptive Nearest Neighbor [54℄ uses lo
al dis
riminant analysis to estimate the 
lasswithin K-NN 
lassi�
ation. Lawren
e et al. [63℄ use lo
al neural network modelsfor fun
tion approximation. See [1℄ for a survey of approa
hes.4.4.2 Lo
al S3VM and Experimental ResultsLo
al S3VM is nothing but an appli
ation of S3VM in a lo
al neighborhoodof ea
h unlabeled point as determined by the K-NN algorithm using Eu
lideandistan
e. This neighborhood in
ludes both labeled and unlabeled examples. Inorder to have enough labeled examples in ea
h neighborhood, we arbitrarily pi
k Kas 10% of all available data points. Further study is needed on how to best sele
t theneighborhood of a point. We 
an summarize the method (Lo
al-S3VM) to 
lassifya given unlabeled point in the following steps:1. Find K-NN for a given unlabeled point.2. If all the labeled points in the neighborhood are in one 
lass, then label theunlabeled point as in that 
lass and end. Otherwise 
ontinue.3. Solve the S3VM-MIP (4.14) in the neighborhood.4. Label the point a

ording to the result of S3VM .There are many advantages to using Lo
al S3VM over using a single globalS3VM. In transdu
tion for any data, we need to 
onstru
t a new model. So thefa
t that lo
al S3VM must 
ompute a new model for ea
h point is also true for anytransdu
tive algorithm. Although there are as many models as unlabeled points



55Table 4.1: Dataset Summary Statisti
sData Set Dim Points Test-sizeBright 14 2462 50*Can
er 9 699 70Diagnosti
 30 569 57Dim 14 4192 50*Heart 13 297 30Housing 13 506 51Ionosphere 34 351 35Musk 166 476 48Sonar 60 208 21Pima 8 769 50*to solve in Lo
al S3VM , the overall 
omputational time of the algorithm in
ludingtime to �nd the lo
al neighborhood is generally less than the global S3VM algorithm.This is be
ause we have fewer unlabeled points in ea
h lo
al model whi
h meanswe have fewer binary variables in ea
h model. Having fewer binary variables resultsin less running time for ea
h lo
al model. Another advantage is that the overall
lassi�
ation fun
tion by Lo
al S3VM is nonlinear (pie
ewise linear to be exa
t)when a linear S3VM is used lo
ally.Determining nearest neighbors of a point 
an be
ome problemati
 for largedatasets. One must 
onsider an appropriate metri
 and method to �nd K-NN.Sin
e we use datasets whi
h have relatively small dimensions, we use Eu
lideandistan
e 
ombined with a partial sort algorithm [71℄ to �nd the lo
al neighborhood.As mentioned in the outlines of the algorithm, for ea
h unlabeled point, a relateddata �le is 
reated and the S3VM model is solved using AMPL. Then the output ofAMPL is analyzed to �nd the label of the point.Our 
omputational study of S3VM 
onsisted of 10 trials using the ten real-world data sets des
ribed in Table 4.1 (eight from [68℄ and the bright and dimgalaxy sets from [75℄) 3. The basi
 properties of the datasets are summarized inTable 4.1. Ea
h dataset is sampled randomly 10 times and ea
h working set (testset) is 
omposed of 10% of the data ex
ept the Bright, Dim, and Pima datasets in3The 
ontinuous response variable in Housing dataset was 
ategorized at 21.5



56Table 4.2: Average Error Results for Indu
tive and Transdu
tive SVMMethodsData Set SVM-RLP S3VM Lo
al SVM Lo
al S3VM 3-NNBright 0.02 0.018 0.008 0.006 0.028Can
er 0.036 0.034 0.06 0.059 0.034Diagnosti
 0.035 0.033 0.039 0.039 0.039Dim 0.064 0.054 0.042 0.044 0.074Heart 0.173 0.16 0.257 0.253 0.17Housing 0.155 0.151 0.118 0.124 0.177Ionosphere 0.109 0.106 0.117 0.109 0.129Musk 0.173 0.173 0.092 0.085 0.208Sonar 0.281 0.219 0.181 0.143 0.171Pima 0.22 0.222 0.22 0.218 0.264whi
h the size of the working set is set to 50 points and rest of the data are usedas the training set. We use the following formula to pi
k the penalty parameter:C = (1��)�(n+`) with � = 0:001, n is the size of the training set, and ` is the size of theworking set. The average working set errors are reported in Table 4.2. The bestresult from di�erent models is underlined for ea
h dataset.Columns two and three of Table 4.2 provide a 
omparison of the indu
tivelinear 1-norm support ve
tor ma
hine (SVM-RLP 4.6) with the transdu
tive linear1-norm SVM optimized used mixed integer programming (S3VM-MIP 4.14). Onall ten datasets, the transdu
tive S3VM-MIP results are either slightly better ornot signi�
antly di�erent than the indu
tive results found using SVM-RLP. Notethat all parameters of the formulations are identi
al; the only di�eren
e betweenthe two formulations is the use of unlabeled data for the transdu
tive 
ase. For thisformulation, unlabeled data seems to help and never hurt generalization.Columns 4 and 5 of Table 4.2 
ompare an indu
tive version of Lo
al SVM andthe transdu
tive version of Lo
al S3VM . In our study, the neighborhoods of pointsused by both Lo
al SVM and Lo
al S3VM are identi
al. Thus for ea
h testingset point the optimization problem solved by lo
al S3VM is identi
al to the onesolved by lo
al SVM on
e the terms involving the unlabeled data are removed. Thiswas done to ensure that the introdu
tion of unlabeled data was the only 
hange



57in the experiment. But in fa
t, it means the unlabeled data are being used todetermine the e�e
tive size of the neighborhood for Lo
al SVM whi
h in itself is aform of transdu
tion. Column 6 of Table 4.2 gives results for the 3-nearest-neighboralgorithm. This was done to examine improvements that o

ur by simply swit
hingto a lo
al algorithm. Lo
al S3VM outperformed or did as well as Lo
al SVM oneight of the ten datasets, on
e again supporting the transdu
tive hypothesis. Theimprovements 
annot be simply attributed to a lo
al learning strategy sin
e 3-NNdid worse than both Lo
al SVM and S3VM on nine of ten datasets.Overall, Lo
al S3VM was 
onsistently the best or almost the best in our ex-periments. Either S3VM or the Lo
al S3VM obtained the best results on most ofthe datasets ex
ept Dim and Housing datasets. The results indi
ate that using thelabeled and unlabeled points in a transdu
tion model 
an improve a

ura
y. Lo-
al S3VM resulted in better a

ura
y than S3VM on six datasets. One noteworthypoint is that in some 
ases (Sonar, Musk, Housing, Bright) Lo
al S3VM improveda

ura
y notably. On Can
er, Diagnosti
, Heart, and Ionosphere the fa
t thatS3VM performed best indi
ates that if the neighborhood of Lo
al S3VM is in
reased,Lo
al S3VM 
ould perform better. The best method of 
hoosing neighborhoods forlo
al methods is still very mu
h an open question. The proposed algorithm in thisse
tion takes into 
onsideration only one unlabeled point at a given time. Althoughthere might be many unlabeled points in a given neighborhood, the algorithm re-turns the results only on the test point of interest. The results for other points arebasi
ally dis
arded. One extension would be keeping these results for a �nal voteat the end of the algorithm. In this 
ase, we 
an assign a probability of 
lass mem-bership for a 
ertain point. The results from one point 
an also be used as startingpoints to improve the solution time of Lo
al S3VM on nearby points.4.5 Non
onvex Quadrati
 Approa
hAn alternative approa
h to solving the minimum error S3VM problem (4.12)is to 
onvert it into a non
onvex quadrati
 program. We adapt the approa
h usedpreviously to handle disjun
tiveness of 
lassi�
ation labels within the bilinear sepa-rability [12℄ and global tree optimization problems [17, 3, 12℄. On
e again a de
ision



58variable dj is introdu
ed for ea
h point su
h that at optimality if dj = 1 then thepredi
ted 
lass of xj is 1 and if dj = 0 then the xj is predi
ted as 
lass -1. Theresulting problem is (S3VM-QP)minw;b;�;�;z;d C " nXi=1 �i + n+X̀j=n+1(dj�j + (1� dj)zj)# + 12 k w k2s:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b+ �j � 1 �j � 0 j = n+ 1; : : : ; n+ `�(w � xj � b) + zj � 1 zj � 0 0 � dj � 1 (4.15)
An intuitively simple approa
h is to adapt a blo
k 
oordinate des
ent algorithm(e.g. [14℄) whi
h alternates between �xing d and estimating the SVM weights w; band other dependent variables, and optimizing d with the other SVM variables �xed.In [17℄, it was shown for a 
lass of problems that in
ludes S3VM-QP (4.15), using2-norm k w k2 su
h an approa
h will 
onverge in a �nite number of iterations toa solution satisfying the minimum prin
ipal ne
essary optimality 
onditions. Nolinesear
h is required. The proof in [17℄ does require ea
h subproblem be solvedto optimality, but this 
ondition 
an be relaxed to require only a stri
t de
rease inthe obje
tive fun
tion. On the global tree optimization problem [3, 17℄ , the blo
k
oordinate des
ent algorithm was found to be very prone to lo
al minima so a tabusear
h method was used. When applied to transdu
tion, we also found this simplealgorithm to be very prone to lo
al minima and thus do not report the results here.To improve the results, we developed a heuristi
 variation of the blo
k 
oordinatedes
ent algorithm. We introdu
e this algorithm in the following se
tion.4.5.1 A Des
ent Algorithm for Transdu
tive SVMThe essential idea behind our heuristi
 approa
h is that we start by heavilypenalizing solutions with points falling within the margin and then relax this re-quirement in order to �nd solutions with wider margin. Just as in the basi
 blo
k
oordinate des
ent method, we �rst estimate the labels (dj; j = n + 1; : : : ; n + `)based on our 
urrent estimate of the SVM, and then solve S3VM-QP with d �xed.



59Note that in pra
ti
e and for easy introdu
tion of nonlinearity via kernels we solvethe dual of Problem (4.15) whi
h for �xed d redu
es to the usual dual SVM problem(Eq. 4.5) tailored for transdu
tion :min� 12 n+X̀i=1 n+X̀j=1 yiyj�i�jK(xi; xj)� n+X̀i=1 �is:t: n+X̀i=1�iyi = 00 � �i � C i = 1; : : : ; n+ ` (4.16)
where yj = 2 � (dj � 12) for j = n + 1; : : : ; n + `, K(�; �) is a kernel fun
tion. Thispro
ess is repeated until a lo
al minimum is rea
hed. Then the weight on themis
lassi�
ation error C is de
reased allowing wider margins. In order to es
apefrom lo
al minima, the algorithm swit
hes the labels of unlabeled data 
lose tothe separating hyperplane, if ne
essary. For this purpose, we 
he
k the 
onse
utivesolutions to tra
k lo
al minima. If 10 
onse
utive solutions are the same we assignthe opposite labels to the points satisfying jw � xi+1 � bj < S. O

asionally a lo
alminima is found with all points 
lassi�ed in one 
lass (w = 0). In this 
ase, thealgorithm restarts using the same initial 
onditions ex
ept for a redu
ed marginpenalty parameter C for the unlabeled data. We empiri
ally pi
ked C = �100�(1��) ,be
ause it performed well in most 
ases. To ensure a good starting solution, theinitial label assignments are made based on the 
losest 
lass 
enter for ea
h unlabeledpoint. The resulting algorithm 
an be summarized as follows:Algorithm 4.5.1. S3VM-IQP� Find 
lass 
enters from training points� Assign labels d0 to working set a

ording to the 
losest 
lass 
enter� Initialization: i = 0, � = 0:9, C = �100�(1��) , 
ounter = 0, S = 0:2:� While i � max iteration



601. Fix di and solve Problem 4.15 (or its dual (4.16)) to �nd (wi+1; bi+1; �i+1,�i+1; zi+1).2. Fix (wi+1; bi+1; �i+1; �i+1; zi+1) and solve Problem 4.15 for di+1:3. Che
k 
onvergen
e 
riteria{ If solution is same as the previous onethen 
ounter=
ounter +1 and � = � � 0:9else if there exists no point within marginthen stopelse let 
ounter = 0{ if 
ounter > 10 then let 
ounter = 0 and assign the opposite labelsto the points satisfying jwi+1 � x� bi+1j < S{ if solution is all-in-one-
lass then reassign initial 
onditionsex
ept i and let �� = 0:94. i = i+ 1As a ben
hmark for transdu
tive SVM, we report results from SVM-Lightproposed by Joa
hims in [60, 59℄. Transdu
tive SVM-Light also 
an be viewed asa blo
k 
oordinate des
ent algorithm that alternates between estimating the 
lasslabels and optimizing the SVM based on those labels. Transdu
tive SVM-Lighthas an inner and an outer loop. The outer loop adjusts the penalty parameters onmis
lassi�
ation errors. Di�erent errors are used for the unlabeled data a

ordingto their estimated 
lass labels. After initial indu
tive iteration, the algorithm startswith low penalty terms for unlabeled data. Two penalty terms (C��; C�+) are usedin transdu
tive SVM-Light, ea
h for 
lassifying an unlabeled point as a 
lass -1 ora 
lass 1 obje
t respe
tively. Then it uniformly in
reases the in
uen
e of unlabeleddata up to a user-de�ned penalty level. During this phase, the algorithm tunesthese penalty terms in a way to satisfy a user-de�ned bias in data. The innerloop optimizes the SVM for the given penalties. The inner loop swit
hes the labelsof two given points, if su
h an a
tion redu
es the overall error. Like S3VM-IQP,SVM-Light alternates the labels to avoid lo
al minima. The primary di�eren
eis that SVM-Light 
hanges the signs of at most two points at a time. Another



61Table 4.3: Average Error Results for Transdu
tive and Indu
tive Meth-ods Data Set SVM-QP SVM-Light S3VM-IQPHeart 0.16 0.163 0.1966Housing 0.1804 0.1608 0.1647Ionosphere 0.0857 0.1572 0.0943Sonar 0.1762 0.2524 0.1572di�eren
e is SVM-Light uses di�erent margin penalty parameters for 
lass 1 and
lass -1 obje
ts. In addition, unlike S3VM-QP, it starts with lower values for marginpenalty parameters. Details of SVM-Light and su

essful results on large datasets
an be found in [60℄. We use the default parameter options in our experiments withSVM-Light.4.5.2 S3VM-IQP ResultsIn this se
tion we 
ompare S3VM-IQP with SVM-QP (Eq. 4.5) and trans-du
tive SVM-Light. We use the same datasets as in the previous se
tion. Dueto the long 
omputational times for S3VM-IQP and transdu
tive SVM-Light, welimit our experiments to only the Heart, Housing, Ionosphere, and Sonar datasets.Linear kernel fun
tions are used for all methods used in this se
tion. The resultsgiven in Table 4.3 show that using unlabeled data in the 
ase of datasets Heart andIonosphere a�e
ts generalization ability slightly but the di�eren
e between the besttransdu
tive result and SVM-QP (Eq. 4.5) is not statisti
ally signi�
ant. In theother two 
ases (Housing and Sonar), the best transdu
tive method outperformsSVM-QP signi�
antly. On two datasets S3VM-IQP performs signi�
antly betterthan transdu
tive SVM-Light and in one 
ase (Housing) the di�eren
e between twomethods is not statisti
ally signi�
ant.As indi
ated above, the results from both S3VM-IQP and SVM-Light are in-
on
lusive. Both algorithms are mu
h more expensive than their indu
tive versions.From the results on the mixed integer programming approa
hes we know that trans-du
tion 
an improve learning. We spe
ulate that the reason that these improvementswere not found using S3VM-IQP and SVM-Light is that the optimization problem



62is very diÆ
ult and that the methods are failing to �nd the global minima. Weknow from the prior experiments that there is very little room for improvement onthese spe
i�
 learning tasks. Very few lo
al minima will lead to better generaliza-tion. S3VM-MIP and its lo
al version are �nding globally optimal solutions thatare better. From the results on SVM-Light reported in [60℄ we know that on largerproblems in text 
ategorization, transdu
tive inferen
e using SVM-Light did leadto signi�
ant improvements. So on di�erent learning tasks S3VM-IQP may performbetter as well. We spe
ulate that on problems where there are many lo
al minimathat improve generalization, it is not as essential that the global minimum be found.Further studies are needed to identify when methods that �nd good but not glob-ally optimial solutions are suÆ
ient. Note that nonlinear kernels also might resultin better generalization.4.6 Con
lusionWe examined mathemati
al models for semi-supervised support ve
tor ma-
hines (S3VM). We proposed a general S3VM model that minimizes both the mis-
lassi�
ation error and the fun
tion 
apa
ity based on all the available data. Threedi�erent fun
tions for penalizing unlabeled points falling in the margin were dis-
ussed. Our 
omputational investigation fo
used on the minimum error formulationfor the transdu
tive inferen
e problem. We 
onverted this problem to a mixed-integer program that 
an be exa
tly solved using 
ommer
ial integer programmingpa
kages. By using the MIP formulation with a lo
al learning algorithm, a powerfuls
alable transdu
tive inferen
e method was 
reated. Our 
omputational experimentsfound that the lo
al learning method was the most e�e
tive overall. Further studiesare needed to determine how to best sele
t neighborhoods and to 
hoose the param-eters within the lo
al S3VM-MIP. In addition, very eÆ
ient 
omputational methodsfor the lo
al S3VM-MIP are needed. One possibility is to use the estimated labelsand models for one point as a starting point for other points. We also examineda non
ovex quadrati
 optimization approa
h to S3VM. Our 
omputational studieswere less 
on
lusive using this approa
h. The best optimization approa
h for solvingthis problem is still very mu
h an open question.
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reasingly 
ompetitive markets, 
hallenging s
ienti�
 problems, and 
omplexde
ision pro
esses require to use all available information on hand to enhan
e theoutput of 
urrent models. In the last two 
hapters we proposed methods to introdu
enew approa
hes for 
apa
ity 
ontrol by solving semi-supervised learning problems.These methods were implemented in the feature spa
e. We will shift our fo
us inthe next 
hapter to propose 
apa
ity 
ontrol te
hniques in the label spa
e.We proposed using unlabeled data as an extra information for 
urrent ma
hinelearning methods. One 
an also use the output of several models to improve thequality of the �nal output. Boosting [87℄ is a method for 
ombining the output ofthe several ma
hine learning models. In the next 
hapter, we use 
olumn generationte
hnique from mathemati
al programming to boost de
ision stumps and de
isiontrees.



CHAPTER 5A Column Generation Algorithm for Boosting5.1 Introdu
tionRe
ent papers [87℄ have shown that boosting, ar
ing, and related ensemblemethods (hereafter summarized as boosting) 
an be viewed as margin maximizationin label spa
e. By 
hanging the 
ost fun
tion, di�erent boosting methods su
h asAdaBoost 
an be viewed as gradient des
ent to minimize this 
ost fun
tion [66℄.Some authors have noted the possibility of 
hoosing 
ost fun
tions that 
an beformulated as linear programs (LP) but then dismiss the approa
h as intra
tableusing standard LP algorithms [51, 81, 23℄. In this 
hapter, we show that LP boostingis 
omputationally feasible using a 
lassi
 
olumn generation simplex algorithm [72℄.This method performs tra
table boosting using any 
ost fun
tion expressible as anLP. We spe
i�
ally examine the variations of the 1-norm soft margin 
ost fun
tionused for support ve
tor ma
hines [82, 4, 65℄ (See SVM-RLP problem 4.6 in Chapter4). One advantage of these approa
hes is that immediately the method of analysisfor support ve
tor ma
hine problems be
omes appli
able to the boosting problem.In Se
tion 5.2, we summarize boosting brie
y and explain the motivation behindthis study. We also review theoreti
al �ndings indi
ated in [10, 40℄. In Se
tion5.3, we dis
uss the soft margin LP formulation adapted to boosting. By adoptinglinear programming, we immediately have the tools of mathemati
al programmingat our disposal. By use of duality theory and optimality 
onditions, we 
an gaininsight into how LP boosting works mathemati
ally. In Se
tion 5.4, we examinehow 
olumn generation approa
hes for solving large s
ale LPs 
an be adapted toboosting.For 
lassi�
ation, we examine both standard and 
on�den
e-rated boosting.Standard boosting algorithms use weak learners (base learners, hypotheses) thatare 
lassi�ers (su
h as de
ision trees, neural networks et
.), that is, whose outputsare in the set f�1;+1g. S
hapire and Singer [88℄ have 
onsidered boosting weak64



65learners whose outputs re
e
ted not only a 
lassi�
ation but also an asso
iated
on�den
e en
oded by a value in the range [�1;+1℄. They demonstrate that so-
alled 
on�den
e-rated boosting 
an speed 
onvergen
e of the 
omposite 
lassi�er,though the a

ura
y in the long term was not found to be signi�
antly a�e
ted.In Se
tion 5.5, we dis
uss the minor modi�
ations needed for LPBoost to perform
on�den
e-rated boosting.The methods we develop 
an be readily extended to any boosting problemformulated as an LP. We demonstrate this by adapting the approa
h to regressionin Se
tion 5.6. Computational results and pra
ti
al issues for implementation of themethod are reported in Se
tion 5.7.5.2 Motivation for Soft Margin BoostingAs so
ial beings, humans make de
isions by asking friends their opinions. Insome 
ases, we might simply make a de
ision/judgement based on the majorityopinion. The same phenomenon is valid for demo
rati
, 
ivilized so
ieties in general.Publi
 de
isions are made by the majority vote. As ordinary 
itizens, our rights tovote do not require sophisti
ated knowledge, advan
ed edu
ation et
.. Conventionalwisdom suggests that even though we are not in the position to make publi
 de
isionsas individuals, sin
e it is representative of the 
on
erned 
itizens, the majority votewill be the right 
hoi
e. Surprisingly, voting methods also perform well in supervisedlearning 
ases. In voting methods, the idea is to 
onstru
t several learning modelsand 
lassify obje
ts based on the majority vote of the outputs from these models.There have been many su

essful variations of voting methods. The mostfamous one, the AdaBoost algorithm [87℄, is given below. r is the maximum numberof boosting rounds given to the algorithm. aj j = 1; : : : ; r is the weight of the ea
hweak learner (
lassi�er), hj, from the the 
lass of fun
tions, H. �j is the weightederror rate in ea
h boosting iteration.



66Algorithm 5.2.1 (AdaBoost).Given as input training set: S with n instan
es x and labels yr  max boosting roundsa 0 All 
oeÆ
ients are 0H(S; u) Weak learneru ( 1n ; : : : ; 1n) Example weightsfor j = 1..rFind weak learner hj  H(S; u)�j  Pi:hj(xi)6=yi ui weighted errorif �j > 1=2; r j � 1 breakaj  log �j1��j hypothesis weightfor ea
h uiif hj(xi) 6= yi; ui  ui=(2�j)else, ui  ui=(2(1� �j))endendreturn r; f =Prj=1 ajhjThe basi
 rationale behind AdaBoost is to in
rease the weight values of themis
lassi�ed obje
ts and to de
rease the weight values of those 
lassi�ed 
orre
tlyin ea
h iteration. Thus, the next weak learner attempts to perform well on themis
lassi�ed obje
ts. Although, this bla
k-box method might look to be prone tothe over�tting problem in ea
h iteration, strong experimental results have shownthat AdaBoost 
an generalize very well even when the number of boosting roundsis in
reased. Breiman tried to explain this situation in the 
ontext of Bias-Varian
etrade-o� [22℄. It was shown [87℄ that better generalization was due to the maxi-mization of the margin distribution in label spa
e (yf(x)).Margin maximization in label spa
e enables the determination of the general-ization error boundaries of boosting approa
h by adapting similar boundaries fromsupport ve
tor ma
hines. Su
h error boundaries, dependent on the fun
tion 
lass,the size of the smallest 
over for su
h fun
tion 
lass, and the size of the training set



67are given in [10, 40℄ (espe
ially Theorem 2.2 of [40℄). We give this theorem withoutproof.Theorem 5.2.1. Consider thresholding a real-valued fun
tion spa
e F on the do-main X. Fix 
 2 R+ and 
hoose G � F� L(X). For any probability distribution Don X � f�1; 1g, with probability 1 � Æ over n random examples S, any hypothesisf 2 F for whi
h (f; gf) 2 G has generalization error no more thanerrD(f) � "(n;F; Æ; 
) = 2n �logN(G; 2n; 
2) + log 2Æ� ,where N(�) is the 
overing number and provided n > 2=", and there is no dis
reteprobability on mis
lassi�ed training points.We are now in a position to apply these results to our fun
tion 
lass whi
hwill be in the form des
ribed above, F = 
o(H) = �Ph2H ahh : ah � 0	 ; where wehave left open for the time being what the 
lass H of weak learners might 
ontain.The sets G of Theorem 5.2.1 will be 
hosen as follows:GB = ( Xh2H ahh; g! :Xh2H ah + kgk1 � B, ah � 0) :Hen
e, the 
ondition that a fun
tion f =Ph2H ahh satis�es the 
onditions of The-orem 5.2.1 for G = GB is simplyPh2H ah + 1�Pni=1 � ((xi; yi) ; f; 
)=Ph2H ah + 1�Pni=1 �i � B: (5.1)Note that this will be the quantity that we will minimize through the boostingiterations des
ribed in later se
tions, where we will use the parameter C in pla
eof 1=� and the margin 
 will be set to 1. Based on results from [40℄, we seethat optimizing B dire
tly optimizes the relevant 
overing number bound and hen
ethe generalization bound given in Theorem 5.2.1 with G = GB. Note that in the
ases 
onsidered, jGj is just the growth fun
tion, BH(m), of the 
lass, H of weaklearners. The 
entral fo
us of this 
hapter is to optimize these error boundaries usinga 
olumn generation te
hnique from mathemati
al programming. In the following



68se
tions spe
i�
 formulations based on linear programming are introdu
ed.5.3 Boosting LP for Classi�
ationFrom the theoreti
al results shown in [10, 40℄, we 
an see that a soft margin
ost fun
tion should be valuable for boosting 
lassi�
ation fun
tions. On
e againusing the te
hniques used in support ve
tor ma
hines, we 
an formulate this problemas a linear program. The upper bound on generalization error de�ned in [40℄ 
an beoptimized dire
tly using an LP. The LP is formulated as if all possible labelings of thetraining data by the weak learners were known. The LP minimizes the 1-norm softmargin 
ost fun
tion used in support ve
tor ma
hines with the added restri
tionsthat all the weights are positive and the threshold is assumed to be zero. This LPand variants 
an be pra
ti
ally solved using a 
olumn generation approa
h. Weaklearners are generated as needed to produ
e the optimal support ve
tor ma
hinebased on the output of the all weak learners. In essen
e the base learner be
omean `ora
le' that generates the ne
essary 
olumns. The dual variables of the linearprogram provide the mis
lassi�
ation 
osts needed by the learning ma
hine. The
olumn generation pro
edure sear
hes for the best possible mis
lassi�
ation 
osts indual spa
e. Only at optimality is the a
tual ensemble of weak learners 
onstru
ted.5.3.1 LP FormulationLet the matrixH be a n by r matrix of all the possible labelings of the trainingdata using fun
tions from H. Spe
i�
ally Hij = hj(xi) is the label (1 or � 1) givenby weak learner hj 2 H on the training point xi. Ea
h 
olumn H:j of the matrix H
onstitutes the output of weak learner hj j = 1; : : : ; r on the training data, whileea
h rowHi gives the outputs of all the weak learners on the example xi i = 1; : : : ; n.There may be up to 2n distin
t weak learners.The following linear program 
an be used to minimize upper bound on gener-



69alization error (B) given in Eq.5.1:mina;� Pri=1 ai + CPni=1 �is:t: yiHia+ �i � 1; �i � 0; i = 1; : : : ; naj � 0; i = 1; : : : ; r (5.2)where C > 0 is the tradeo� parameter between mis
lassi�
ation error and marginmaximization. The dual of LP (5.2) ismaxu Pni=1 uis:t: Pni=1 uiyiHij � 1; j = 1; : : : ; r0 � ui � C; i = 1; : : : ; n (5.3)Alternative soft margin LP formulations exist, su
h as this one for the �-LP Boost-ing4. [81℄: maxa;�;� ��DPni=1 �is:t: yiHia+ �i � �; i = 1; : : : ; nPri=1 ai = 1; �i � 0; i = 1; : : : ; naj � 0; j = 1; : : : ; r (5.4)
The dual of this LP (5.4) is:minu;� �s:t: Pni=1 uiyiHij � �; j = 1; : : : ; rPni=1 ui = 1; 0 � ui � D; i = 1; : : : ; n (5.5)These LP formulations are exa
tly equivalent given the appropriate 
hoi
e ofthe parameters C and D. Proofs of this fa
t 
an be found in [82, 10℄ so we only statethe theorem here.Theorem 5.3.1 (LP Formulation Equivalen
e). If LP (5.4) with parameter Dhas a primal solution (�a; �� > 0; ��) and dual solution (�u; ��), then (â = �a�� ; �̂ = ����)4We remove the 
onstraint � � 0 sin
e � > 0 at optimality under the 
omplementation assump-tion.



70and (û = �û� ) are the primal and dual solutions of LP (5.2) with parameter C = D�� .Similarly, if LP 5.2 with parameter C has primal solution (â 6= 0; �̂) and dual solution(û 6= 0), then (�� = 1Pri=1 âi ; �a = â��; �� = �̂��) and ( �� = 1Pni=1 ûi ; �u = û��) are the primaland dual solutions of LP (5.4) with parameter D = C�̂.Pra
ti
ally we found �-LP (5.4) with D = 1n� ; � 2 (0; 1) preferable be
ause ofthe interpretability of the parameter. A more extensive dis
ussion and developmentof these 
hara
teristi
s for SVM 
lassi�
ation 
an be found in [82℄. To maintaindual feasibility, the parameter � must maintain 1n <= D <= 1. By pi
king �appropriately we 
an for
e the minimum number of support ve
tors. We know thatthe number of support ve
tors will be the number of points mis
lassi�ed plus thepoints on the margin, and this was used as a heuristi
 for 
hoi
e of �. The readershould 
onsult [81, 82℄ for a more in-depth analysis of this family of 
ost fun
tions.5.3.2 Properties of LP formulationWe now examine the 
hara
teristi
s of LP (5.4) and its optimality 
onditions togain insight into the properties of LP Boosting. This will be useful in understandingboth the e�e
ts of the 
hoi
e of parameters in the model and the performan
e of theeventual algorithm. The optimality 
onditions [72℄ of LP (5.4) are primal feasibility:yiHia+ �i � �; i = 1; : : : ; nPri=1 ai = 1; �i � 0; i = 1; : : : ; naj � 0; i = 1; : : : ; r (5.6)dual feasibility: Pni=1 uiyiHij � �; j = 1; : : : ; rPni=1 ui = 1; 0 � ui � D; i = 1; : : : ; n (5.7)and 
omplementarity here stated as equality of the primal and dual obje
tives:��D nXi=1 �i = � (5.8)



71Complementarity 
an be expressed using many equivalent formulations. For exam-ple, from the 
omplementarity property, the following equations hold:ui(yiHia+ �i � �) = 0; i = 1; : : : ; naj(Pni=1 uiyiHij � �) = 0; j = 1; : : : ; r (5.9)As in SVM, the optimality 
onditions tell us many things. First we 
an 
har-a
terize the set of base learners that are positively weighted in the optimal ensemble.Re
all that the primal variables ai multiply ea
h base learner. The dual LP assignsmis
lassi�
ation 
osts ui to ea
h point su
h that the ui sum to 1. The dual 
onstraintPni=1 uiyiHij � � \s
ores" ea
h weak learner h:j. The s
ore is the weighted sum ofthe 
orre
tly 
lassi�ed points minus the weighted sum of the in
orre
tly 
lassi�edpoints. The weak learners with lower s
ores have greater weighted mis
lassi�
ation
osts. The formulation is pessimisti
 in some sense. The set of best weak learners fora given u will all have a s
ore of �. The dual obje
tive minimizes � so the optimalmis
lassi�
ation 
ost u will be the most pessimisti
 one, i.e., it minimizes the maxi-mum s
ore over all the weak learners. From the 
omplementary sla
kness 
ondition,aj(Pni=1 uiyiHij � �) = 0; j = 1; : : : ; r; only the weak learners with s
ores equal to� 
an have positive weights aj in the primal spa
e. So the resulting ensemble willbe a linear 
ombination of the weak learners that perform best under the most pes-simisti
 
hoi
e of mis
lassi�
ation 
osts. This interpretation 
losely 
orresponds tothe game strategy approa
h of [23℄ (whi
h is also a LP boosting formulation solvableby LPBoost.) A notable di�eren
e is that LP (5.5) has an additional upper boundon the mis
lassi�
ation 
osts u, 0 � ui � D; i = 1; : : : ; n, that is produ
ed by theintrodu
tion of the soft margin in the primal.From SVM resear
h, we know that both the primal and dual solutions will besparse and the degree of sparsity will be greatly in
uen
ed by the 
hoi
e of parameterD = 1�n . The size of the dual feasible region depends on our 
hoi
e of �. If � is toolarge, for
ing D small, then the dual problem is infeasible. For large but still feasible� (D very small but still feasible), the problem degrades to something very 
lose tothe equal-
ost 
ase, ui = 1=n. All the ui are for
ed to be nonzero. Pra
ti
ally, thismeans that as � in
reases, the optimal solution is frequently a single weak learner



72that is best assuming equal 
osts. As � de
reases (D grows), the mis
lassi�
ation
osts, ui, will in
rease for hard-to-
lassify points or points on the margin in the labelspa
e and will go to 0 for points that are easy to 
lassify. Thus the mis
lassi�
ation
osts u be
ome sparser. If � is too small (and D too large) then the meaninglessnull solution, a = 0, with all points 
lassi�ed as one 
lass, be
omes optimal.For a good 
hoi
e of �, a sparse solution for the primal ensemble weights awill be optimal. This implies that few weak learners will be used. Also a sparsedual u will be optimal. This means that the solution will be dependent only on asmaller subset of data (the support ve
tors.) Data with ui = 0 are well-
lassi�edwith suÆ
ient margin, so the performan
e on these data is not 
riti
al. From LPsensitivity analysis, we know that the ui are exa
tly the sensitivity of the optimalsolution to small perturbations in the margin. In some sense the sparseness of u isgood be
ause the weak learners 
an be 
onstru
ted using only smaller subsets of thedata. But as we will see in Se
tion 5.7, this sparseness of the mis
lassi�
ation 
osts
an lead to problems when pra
ti
ally implementing algorithms.5.4 LPBoost AlgorithmsWe now examine pra
ti
al algorithms for solving the LP (5.4). Sin
e thematrix H has a very large number of 
olumns, prior authors have dismissed theidea of solving LP formulations for boosting as being intra
table using standardLP te
hniques. But 
olumn generation te
hniques for solving su
h LPs have existedsin
e the 1950s and 
an be found in LP text books; see for example [72, Se
tion 7.4℄.Column generation is frequently used in large-s
ale integer and linear programmingalgorithms so 
ommer
ial 
odes su
h as CPLEX have been optimized to perform
olumn generation very eÆ
iently [33℄. The simplex method does not require thatthe matrix H be expli
itly available. At ea
h iteration, only a subset of the 
olumnsis used to determine the 
urrent solution (
alled a basi
 feasible solution). Thesimplex method needs some means for determining if the 
urrent solution is optimal,and if it is not, some means for generating some 
olumn that violates the optimality
onditions. The tasks of veri�
ation of optimality and generating a 
olumn 
anbe performed by the learning algorithm. A simplex-based boosting method will



73alternate between solving an LP for a redu
ed matrix Ĥ 
orresponding to the weaklearners generated so far and using the weak learning algorithm to generate thebest-s
oring weak learner based on the dual mis
lassi�
ation 
ost provided by theLP. This will 
ontinue until a well-de�ned exa
t or approximate stopping 
riterionis rea
hed.The idea of 
olumn generation (CG) is to restri
t the primal problem (5.2)by 
onsidering only a subset of all the possible labelings based on the weak learn-ers generated so far; i.e., only a subset Ĥ of the 
olumns of H is used. The LPsolved using Ĥ is typi
ally referred to as the restri
ted master problem. Solvingthe restri
ted primal LP 
orresponds to solving a relaxation of the dual LP. The
onstraints for weak learners that have not been generated yet are missing. Oneextreme 
ase is when no weak learners are 
onsidered. In this 
ase the optimal dualsolution is ûi = 1n (with appropriate 
hoi
e of D). This will provide the initializationof the algorithm.If we 
onsider the unused 
olumns to have âi = 0, then â is feasible for theoriginal primal LP. If (û; �̂) is feasible for the original dual problem then we aredone sin
e we have primal and dual feasibility with equal obje
tives. If â is notoptimal then (û; �̂) is infeasible for the dual LP with full matrix H. Spe
i�
ally, the
onstraintPni=1 ûiyiHij � �̂ is violated for at least one weak learner. Or equivalently,Pni=1 ûiyiHij > �̂ for some j. Of 
ourse we do not want to a priori generate all
olumns of H (H:j), so we use our weak learner as an ora
le that either produ
esH:j; Pni=1 ûiyiHij > �̂ for some j; or a guarantee that no su
h H:j exists. To speed
onvergen
e we would like to �nd the one with maximum deviation, that is, theweak learning algorithm H(S; u) must deliver a fun
tion ĥ satisfyingnXi=1 yiĥ(xi)ûi = maxh2H nXi=1 ûiyih(xi) (5.10)Thus ûi be
omes the new mis
lassi�
ation 
ost, for example i, that is given to theweak learning ma
hine to guide the 
hoi
e of the next weak learner. One of the bigpayo�s of the approa
h is that we have a stopping 
riterion. If there is no weaklearner h for whi
hPni=1 ûiyih(xi) > �̂; then the 
urrent 
ombined hypothesis is the



74optimal solution over all linear 
ombinations of weak learners.We 
an also gauge the 
ost of early stopping sin
e if maxh2HPni=1 ûiyih(xi)) ��̂ + �; for some � > 0, we 
an obtain a feasible solution of the full dual problemby taking (û; �̂ + �). Hen
e, the value V of the optimal solution 
an be boundedbetween �̂ � V < �̂ + �. This implies that, even if we were to potentially in
lude anon-zero 
oeÆ
ient for all the weak learners, the value of the obje
tive ��DPni=1 �i
an only be in
reased by at most �.We assume the existen
e of the weak learning algorithmH(S; u) whi
h sele
tsthe best weak learner from a set H 
losed under 
omplementation using the 
riterionof equation (5.10). The following algorithm results



75Algorithm 5.4.1 (LPBoost).Given as input training set: Sr 0 No weak learnersa 0 All 
oeÆ
ients are 0�  0u ( 1n ; : : : ; 1n) Corresponding optimal dualREPEATr r + 1Find weak learner using equation (5.10) :hr  H(S; u)Che
k for optimal solution:IfPni=1 uiyihr(xi) � �; r r � 1; breakHir  hr(xi)Solve restri
ted master for new 
osts:(u; �) argmin �s:t: Pni=1 uiyihj(xi) � �j = 1; : : : ; r0 � ui � D; i = 1; : : : ; nENDa Lagrangian multipliers from last LPreturn r; f =Prj=1 ajhjNote that the assumption of �nding the best weak learner is not essential forgood performan
e on the algorithm. Re
all that the role of the learning algorithmis to generate 
olumns (weak learners) 
orresponding to a dual infeasible row orto indi
ate optimality by showing no infeasible weak learners exist. All that werequire is that the base learner return a 
olumn 
orresponding to a dual infeasiblerow. It need not be the one with maximum infeasibility. This is merely done toimprove 
onvergen
e speed. In fa
t, 
hoosing 
olumns using \steepest edge" 
riteriathat look for the 
olumn that leads to the biggest a
tual 
hange in the obje
tivemay lead to even faster 
onvergen
e. If the learning algorithm fails to �nd a dual



76infeasible weak learner when one exists than the algorithm may prematurely stopat a nonoptimal solution.With small 
hanges this algorithm 
an be adapted to perform any of the LPboosting formulations by simply 
hanging the restri
ted master LP solved, the 
ostsgiven to the learning algorithm, and the optimality 
onditions 
he
ked. Assumingthe base learner solves (5.10) exa
tly, LPBoost is a variant of the dual simplexalgorithm [72℄. Thus it inherits all the bene�ts of the simplex algorithm. Bene�tsin
lude:1. Well-de�ned exa
t and approximate stopping 
riteria. Typi
ally, ad ho
 ter-mination s
hemes, e.g. a �xed number of iterations, must be used for thegradient-based boosting algorithms.2. Finite termination at a globally optimal solution. In pra
ti
e the algorithmgenerates few weak learners to arrive at an optimal solution.3. The optimal solution is sparse and thus uses few weak learners.4. The algorithm is performed in the dual spa
e of the 
lassi�
ation 
osts. Theweights of the optimal ensemble are only generated and �xed at optimality.5. High-performan
e 
ommer
ial LP algorithms optimized for 
olumn generationexist that do not su�er from the numeri
 instability problems reported forboosting [2℄.5.5 Con�den
e-rated BoostingThe derivations and algorithm of the last two se
tions did not rely on theassumption that Hij 2 f�1;+1g. We 
an therefore apply the same reasoning toimplementing a weak learning algorithm for a �nite set of 
on�den
e-rated fun
-tions F whose outputs are real numbers. We again assume that F is 
losed under
omplementation. We simply de�ne Hij = fj(xi) for ea
h fj 2 F and apply thesame algorithm as before. We again assume the existen
e of a weak learner F (S; u),



77whi
h �nds a fun
tion f̂ 2 F satisfyingnXi=1 yif̂(xi)ûi = maxf2F nXi=1 ûiyif(xi) (5.11)The only di�eren
e in the asso
iated algorithm is the weak learner whi
h now opti-mizes this equation.Algorithm 5.5.1 (LPBoost-CRB).Given as input training set: Sr 0 No weak learnersa 0 All 
oeÆ
ients are 0�  0u ( 1n ; : : : ; 1n) Corresponding optimal dualREPEATr r + 1Find weak learner using equation (5.11) :fr  F(S; u)Che
k for optimal solution:IfPni=1 uifihr(xi) � �; r r � 1; breakHir  fr(xi)Solve restri
ted master for new 
osts:(u; �) argmin �s:t: Pni=1 uiyifj(xi) � �j = 1; : : : ; r0 � ui � D; i = 1; : : : ; nENDa Lagrangian multipliers from last LPreturn r; f =Prj=1 ajfj5.6 LPBoost for RegressionThe LPBoost algorithm 
an be extended to optimize any ensemble 
ost fun
-tion that 
an be formulated as a linear program. To solve alternate formulations



78we need only 
hange the LP restri
ted master problem solved at ea
h iteration andthe 
riteria given to the base learner. The only assumptions in the 
urrent ap-proa
h are that the number of weak learners be �nite and that if an improving weaklearner exists then the base learner 
an generate it. To see a simple example of this
onsider the problem of boosting regression fun
tions. We use the following adap-tation of the SVM regression formulations. This LP was also adapted to boostingusing a barrier algorithm in [80℄. We assume we are given a training set of dataS = ((x1; y1); : : : ; (xn; yn)) ; but now yi may take on any real value.mina;�;��;� C�� + �Pri=1 ai + CPni=1(�i + ��i )s:t: Hia� yi � �i � �; �i � 0; i = 1; : : : ; nHia� yi + ��i � ��; ��i � 0; i = 1; : : : ; naj � 0; i = 1; : : : ; r (5.12)
First we reformulate the problem slightly di�erently:mina;�;��;� C�� + �Pri=1 ai + CPni=1(�i + ��i )s:t: ��Hia + �i � �yi; �i � 0; i = 1; : : : ; n� +Hia+ ��i � yi; ��i � 0; i = 1; : : : ; nai � 0; i = 1; : : : ; r (5.13)

We introdu
e Lagrangian multipliers (u; u�), 
onstru
t the dual, and 
onvertto a minimization problem to yield:minu;u� Pni=1 yi(ui � u�i )s:t: Pni=1(�ui + u�i )Hij � �; j = 1; : : : ; rPni=1(ui + u�i ) = 10 � ui � C; 0 � u�i � C; i = 1; : : : ; n (5.14)
LP (5.14) restri
ted to all weak learners 
onstru
ted so far be
omes the newmaster problem. If the base learner returns any hypothesis H:j that is not dualfeasible, i.e. (Pni=1(�ui + u�i )Hij > �), then the ensemble is not optimal and theweak learner should be added to the ensemble. To speed 
onvergen
e we would like



79the weak learner with maximum deviation, i.e.,maxj nXi=1 (�ui + u�i )Hij: (5.15)This is perhaps odd at �rst glan
e be
ause the 
riteria do not a
tually ex-pli
itly involve the dependent variables yi. But within the LPBoost algorithm, theui are 
losely related to the error residuals of the 
urrent ensemble. If the datapoint xi is overestimated by the 
urrent ensemble fun
tion by more than �, thenby 
omplementarity ui will be positive and u�i = 0. So at the next iteration theweak learner will attempt to 
onstru
t a fun
tion that has a negative sign at pointxi. If the point xi falls within the � margin then the ui = u�i = 0, and the nextweak learner will try to 
onstru
t a fun
tion with value 0 at that point. If the datapoint xi is underestimated by the 
urrent ensemble fun
tion by more than �, then by
omplementarity u�i will be positive and ui = 0. So at the next iteration the weaklearner will attempt to 
onstru
t a fun
tion that has a positive sign at point xi. Bysensitivity analysis, the magnitudes of u and u� are proportional to the 
hanges ofthe obje
tive with respe
t to 
hanges in the margin.This be
omes even 
learer using the approa
h taken in the Barrier Boostingalgorithm for this problem [80℄. Equation (5.15) 
an be 
onverted to a least squaresproblem. For vi = �ui + u�i and Hij = fj(xi),(f(xi)� vi)2 = f(xi)2 � 2vif(xi) + v2i : (5.16)So the obje
tive to be optimized by the weak learner 
an be transformed as follows:maxj nXi=1 (�ui + u�i )fj(xi) = maxj nXi=1 vifj(xi) (5.17)= �12 minj nXi=1 �(fj(xi)� vi)2 � fj(xi)2 � v2i � :The 
onstant term v2i 
an be ignored. So e�e
tively the weak learner must 
onstru
ta regularized least squares approximation of the residual fun
tion.The �nal regression algorithm looks very mu
h like the 
lassi�
ation 
ase. The



80variables ui and u�i 
an be initialized to any initial feasible point. We present onesu
h strategy here assuming that D is suÆ
iently large. Here (a)+ := max(a; 0)denotes the plus fun
tion.Algorithm 5.6.1 (LPBoost-Regression).Given as input training set: Sr 0 No weak learnersa 0 All 
oeÆ
ients are 0ui  (�yi)+jjyjj1 Corresponding feasible dualu�i  (yi)+jjyjj1REPEATr  r + 1Find weak learner using equation (5.17) :hr  H(S; (�u+ u�))Che
k for optimal solution:IfPni=1(�ui + u�i )hr(xi) � �; r r � 1; breakHir  hr(xi)Solve restri
ted master for new 
osts:(u; u�) argmin Pni=1(ui � u�i )yis:t: Pni=1(�ui + u�i )hj(xi) � �j = 1; : : : ; rPni=1(ui + u�i ) = 10 � ui; u�i � C; i = 1; : : : ; nENDa Lagrangian multipliers from last LPreturn r; f =Prj=1 ajhj5.7 Computational ExperimentsWe performed three sets of experiments to 
ompare the performan
e of LP-Boost, CRB, and AdaBoost on three 
lassi�
ation tasks: one boosting de
ision treestumps on smaller datasets and two boosting C4.5 [79℄. For de
ision tree stumps



81Table 5.1: Average A

ura
y and Standard Deviations of Boosting usingDe
ision Tree Stumps (r) = number of stumps in �nal ensembleDataset LPBoost (r) AB-100 AB-1000Can
er 0.9657 � 0.0245 (14.7) 0.9542 � 0.0292 0.9471 � 0.0261Diagnosti
 0.9613 � 0.0272 (54.2) 0.9684 � 0.0273 0.9701 � 0.0311Heart 0.7946 � 0.0786 (70.8) 0.8182 � 0.0753 0.8014 � 0.0610Ionosphere 0.9060 � 0.0523 (87.6) 0.9060 � 0.0541 0.9031 � 0.0432Musk 0.8824 � 0.0347 (205.3) 0.8403 � 0.0415 0.8908 � 0.0326Sonar 0.8702 � 0.0817 (85.7) 0.8077 � 0.0844 0.8558 � 0.0781six datasets were used. For the C4.5 experiments, we report results for four largedatasets with and without noise. Finally, to further validate C4.5, we experimentedwith ten more additional datasets. The rationale was to �rst evaluate LPBoostwhere the base learner solves (5.10) exa
tly, then to examine LPBoost in a more re-alisti
 environment by using C4.5 as a base learner. All of the datasets were obtainedfrom the UC-Irvine data repository [68℄. For the C4.5 experiments we performedboth traditional and 
on�den
e- rated boosting.5.7.1 Boosting De
ision Tree StumpsWe used de
ision tree stumps as a base learner on the following six datasets:Can
er (9,699), Diagnosti
 (30,569), Heart (13,297), Ionosphere (34,351), Musk(166,476), and Sonar (60,208). The number of features and number of points inea
h dataset are shown, respe
tively, in parentheses. We report testing set a

ura
yfor ea
h dataset based on 10-fold Cross Validation (CV). We generate the de
isiontree stumps based on the mid-point between two 
onse
utive points for a given vari-able. Sin
e there is limited 
on�den
e information in stumps, we did not perform
on�den
e-rated boosting. All boosting methods sear
h for the best weak learnerwhi
h returns the least weighted mis
lassi�
ation error at ea
h iteration. LPBoost
an take advantage of the fa
t that ea
h weak learner need only be added into theensemble on
e. Thus on
e a stump is added to the ensemble it is never evaluatedby the learning algorithm again. The weights of the weak learners are adjusted dy-nami
ally by the LP. This is an advantage over AdaBoost, sin
e AdaBoost adjusts



82prior weights by repeatedly adding the same weak learner into the ensemble.The parameter � for LPBoost was set using a simple heuristi
: 0.1 added topreviously-reported error rates on ea
h dataset in [9℄ ex
ept for the Can
er dataset.Spe
i�
ally the values of � in the same order of the datasets given above were (0.2,0.1, 0.25, 0.2, 0.25, 0.3 ). Results for AdaBoost were reported for a maximumnumber of iterations of 100 and 1000. The 10-fold average 
lassi�
ation a

ura
iesand standard deviations are reported in Table 5.1.LPBoost performed very well both in terms of 
lassi�
ation a

ura
y, numberof weak learners, and training time. There is little di�eren
e between the a

ura
yof LPBoost and the best a

ura
y reported for AdaBoost using either 100 or 1000iterations. The variation in AdaBoost for 100 and 1000 iterations illustrates theimportan
e of well-de�ned stopping 
riteria. Typi
ally, AdaBoost only obtains itssolution in the limit and thus stops when the maximum number of iterations (orsome other heuristi
 stopping 
riteria) is rea
hed. There is no magi
 number ofiterations good for all datasets. LPBoost has a well-de�ned stopping 
riterion thatis rea
hed in a few iterations. It uses few weak learners. There are only 81 possiblestumps on the Breast Can
er dataset (nine attributes having nine possible values),so 
learly AdaBoost may require the same tree to be generated multiple times.LPBoost generates a weak learner only on
e and 
an alter the weight on that weaklearner at any iteration. The run time of LPBoost is proportional to the numberof weak learners generated. Sin
e the LP pa
kage that we used, CPLEX 4.0 [33℄,is optimized for 
olumn generation, the 
ost of adding a 
olumn and reoptimizingthe LP at ea
h iteration is small. An iteration of LPBoost is only slightly moreexpensive that an iteration of AdaBoost. The time is proportional to the number ofweak learners generated. For problems in whi
h LPBoost generates far fewer weaklearners it is mu
h less 
omputationally 
ostly.In the next subse
tion, we test the pra
ti
ality of our methodology on di�erentdatasets using C4.5.



835.7.2 Boosting C4.5LPBoost with C4.5 as the base algorithm performed well after some opera-tional 
hallenges were solved. In 
on
ept, boosting using C4.5 is straightforwardsin
e the C4.5 algorithm a

epts mis
lassi�
ation 
osts. One problem is that C4.5only �nds a good solution not guaranteed to maximize (5.10). This 
an e�e
t the
onvergen
e speed of the algorithm and may 
ause the algorithm to terminate ata suboptimal solution. Another 
hallenge is that the mis
lassi�
ation 
osts deter-mined by LPBoost are sparse, i.e. ui = 0 for many of the points. The dual LPhas a basi
 feasible solution 
orresponding to a vertex of the dual feasible region.Only the variables 
orresponding to the basi
 solution 
an be nonnegative. So whilea fa
e of the region 
orresponding to many nonnegative weights may be optimal,only a vertex solution will be 
hosen. In pra
ti
e we found that when many ui = 0,LPBoost 
onverged slowly. In the limited number of iterations that we allowed (25),LPBoost frequently failed to �nd weak learners that improved signi�
antly over theinitial equal 
ost solution. The weak learners generated using only subsets of thevariables were not ne
essarily good over the full data set. Thus the sear
h was tooslow. Alternative optimization algorithms may alleviate this problem. For example,an interior point strategy may lead to signi�
ant performan
e improvements. Notethat other authors have reported problems with under
ow of boosting [2℄. WhenLPBoost was solved to optimality on de
ision tree stumps with full evaluation ofthe weak learners, this problem did not o

ur. Boosting unpruned de
ision treeshelped somewhat but did not 
ompletely eliminate this problem.Stability and 
onvergen
e speed was greatly improved by adding minimummis
lassi�
ation 
osts to the dual LP (5.5) :minu �s:t: Pni=1 uiyiHij � �; j = 1; : : : ; rPni=1 ui = 1D0 � ui � D; i = 1; : : : ; n (5.18)



84where D = 1�n and D0 = 125�n . The 
orresponding primal problem ismaxa;�;� �+D0Pni=1 �i �DPni=1 �is:t: yiHia + �i � � + �i; i = 1; : : : ; nPri=1 ai = 1; ; aj � 0; i = 1; : : : ; r�i � 0; i = 1; : : : ; n (5.19)
The primal problem maximizes two measures of soft margin: � 
orresponds to theminimum margin obtained by all points and �i measures the additional marginobtained by ea
h point. AdaBoost also minimizes a margin 
ost fun
tion based onthe margin obtained by ea
h point.We ran experiments on larger datasets: Forest, Adult, USPS, and Optdig-its from UCI[68℄. LPBoost was adopted to the multi
lass problem by de�ninghj(xi) = 1 if instan
e xi is 
orre
tly 
lassi�ed by weak learner hj and -1 other-wise.This is just one method of boosting multi
lass problems. Further investigationof multi
lass approa
hes is needed. Forest is a 54-dimension dataset with seven pos-sible 
lasses. The data are divided into 11340 training, 3780 validation, and 565892testing instan
es. There are no missing values. The 15-dimensional Adult datasethas 32562 training and 16283 testing instan
es. One training point that has a miss-ing value for a 
lass label has been removed. We use 8140 instan
es as our trainingset and the remaining 24421 instan
es as the validation set. Adult is a two-
lassdataset with missing values. The default handling in C4.5 has been used for missingvalues. USPS and Optdigits are opti
al 
hara
ter re
ognition datasets. USPS has256 dimensions without missing value. Out of 7291 original training points, we use1822 points as training data and the rest 5469 as validation data. There are 2007test points. Optdigits on the other hand has 64 dimensions without missing values.Its original training set has 3823 points. We use 955 of them as training data and theremaining 2868 as validation data. Parameter sele
tion for both LPBoost and Ad-aBoost was done based on validation set results. Sin
e initial experiments resultedin the same parameter set for both LPBoost and CRB, we set the parameters equalfor CRB and LPBoost to expedite 
omputational work. In order to investigate theperforman
e of boosted C4.5 with noisy data, we introdu
ed 15% label noise for all
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) USPS Dataset (d) Optdigits DatasetFigure 5.1: Validation Set A

ura
y by � Value. Triangles are no noiseand 
ir
les are with noise.four datasets.The � parameter used in LPBoost and the number of iterations of AdaBoost
an signi�
antly a�e
t their performan
e. Thus a

ura
y on the validation set wasused to pi
k the parameter � for LPBoost and the number of iterations for AdaBoost.To avoid ex
essive 
omputation, we limit the maximum number of iterations at 25for all boosting methods as in [2℄. We varied parameter � between 0.03 and 0.11.Initial experiments indi
ated that for very small � values, LPBoost results in one
lassi�er whi
h assigns all training points to one 
lass. On the other extreme, forlarger values of �, LPBoost returns one 
lassi�er whi
h is equal to the one foundin the �rst iteration. Figure 5.1 shows the validation set a

ura
y for LPBoost onall four datasets. Based on validation set results, we use (22,19), (25,4), (22,25),and (25,25) number of iterations for original and 15% noisy data respe
tively forAdaBoost in the Forest, Adult, USPS, and Optdigits datasets.



86Table 5.2: Large Dataset Results from Boosting C4.5Dataset LPBoost CRB AdaBoost C4.5Original Forest 0.7226 0.7259 0.7370 0.6638+ 15% Noise 0.6602 0.6569 0.6763 0.5927Original Adult 0.8476 0.8461 0.8358 0.8289+ 15% Noise 0.8032 0.8219 0.7630 0.7630Original USPS 0.9123 0.9103 0.9103 0.7833+ 15% Noise 0.8744 0.8739 0.8789 0.6846Original OptDigits 0.9249 0.9355 0.9416 0.7958+ 15% Noise 0.8948 0.8948 0.8770 0.6884The testing set results using the value of � with the best validation set a

ura
yare given in Table 5.2. LPBoost was very 
omparable with AdaBoost in terms ofCPU time. As seen in Table 5.2, LPBoost is also 
omparable with AdaBoost in termsof 
lassi�
ation a

ura
y when the validation set is used to pi
k the best parametersettings. All boosting methods outperform C4.5. In general, AdaBoost had the bestperforman
e with narrow margins. LPBoost and CRB performed 
omparable withAdaBoost.The 
omputational 
osts of 25 iterations of LPBoost (either variant) and Ad-aBoost were very similar. We provide some sample CPU times. These timingsshould be 
onsidered only rough estimates. Our experiments were performed on a
luster of IBM RS-6000s used in bat
h mode. Sin
e the ma
hines are not all iden-ti
al and are subje
t to varying loads, run times vary 
onsiderable from run to run.For ea
h dataset we give the se
onds of CPU time on an RS-6000: Forest AdaBoost=717, LPBoost = 930; Adult AdaBoost = 107, LPBoost = 89; USPS AdaBoost =208, LPBoost = 177; and Optdigits AdaBoost = 21, LPBoost = 24.We also 
ondu
ted experiments by boosting C4.5 on small datasets. On
eagain there was no strong eviden
e of superiority of any of the boosting approa
hes.In addition to six UCI datasets used in de
ision tree stumps experiments, we usefour additional UCI datasets here. These are the House(16,435), Housing(13,506)5,Pima(8,768), and Spam(57,4601) datasets. As in the de
ision tree stumps experi-5The 
ontinuous response variable of Housing dataset was 
ategorized at 21.5.



87Table 5.3: Small Dataset Results from Boosting C4.5Dataset LPBoost CRB AdaBoost C4.5Can
er 0.9585 � 0.0171 0.9628 � 0.0245 0.9662 � 0.0254 0.9447 � 0.0248Diagnosti
 0.9649 � 0.0263 0.9631 � 0.0280 0.9705 � 0.0186 0.9370 � 0.0364Heart 0.7913 � 0.0624 0.7946 � 0.0996 0.7867 � 0.0614 0.7880 � 0.0767House 0.9586 � 0.0339 0.9447 � 0.0525 0.9511 � 0.0417 0.9618 � 0.0289Housing 0.8538 � 0.0476 0.8656 � 0.0378 0.8785 � 0.0393 0.8173 � 0.0486Ionosphere 0.9373 � 0.0375 0.9259 � 0.0604 0.9355 � 0.0406 0.9158 � 0.0520Musk 0.8824 � 0.0543 0.9055 � 0.0490 0.9293 � 0.0284 0.8344 � 0.0340Pima 0.7500 � 0.0499 0.7279 � 0.0483 0.7478 � 0.0707 0.7286 � 0.0455Sonar 0.8173 � 0.0827 0.8317 � 0.0827 0.8140 � 0.0928 0.7011 � 0.0727Spam 0.9557 � 0.0086 0.9550 � 0.0098 0.9518 � 0.0092 0.9296 � 0.0087ments, we report results from 10-fold CV. Sin
e the best � value for LPBoost variesbetween 0.05 and 0.1 for the large datasets, we pi
k parameter � = 0:07 for the smalldatasets. Results are reported in Table 5.3. C4.5 performed the best on the Housedataset. AdaBoost performed the best in four datasets out of ten. LPBoost andCRB had the best 
lassi�
ation performan
e for three and two datasets respe
tively.When we drop CRB in Table 5.3, LPBoost would in this 
ase perform the best in�ve datasets, although the parameter � has not been tuned.5.8 Dis
ussion and ExtensionsWe have shown that LP formulations of boosting are both attra
tive theo-reti
ally in terms of generalization error bound and 
omputationally via 
olumngeneration. The LPBoost algorithm 
an be applied to any boosting problem for-mulated as an LP. We examined algorithms based on the 1-norm soft margin 
ostfun
tions for support ve
tor ma
hines. A generalization error bound was foundfor the 
lassi�
ation 
ase. The LP optimality 
onditions allowed us to provide ex-planations for how the methods work. In 
lassi�
ation, the dual variables a
t asmis
lassi�
ation 
osts. The optimal ensemble 
onsists of a linear 
ombination ofweak learners that work best under the worst possible 
hoi
e of mis
lassi�
ation
osts. This explanation is 
losely related to that of [23℄. For regression as dis
ussed



88in the Barrier Boosting approa
h to a similar formulation [80℄, the dual multipli-ers a
t like error residuals to be used in a regularized least square problem. Wedemonstrated the ease of adaptation to other boosting problems by examining the
on�den
e-rated and regression 
ases. Extensive 
omputational experiments foundthat the method performed well versus AdaBoost both with respe
t to 
lassi�
ationquality and solution time. Experimental results have shown that boosting of C4.5de
ision trees improved the testing a

ura
y. From an optimization perspe
tive,LPBoost has many bene�ts over gradient-based approa
hes: �nite termination, nu-meri
al stability, well-de�ned 
onvergen
e 
riteria, fast algorithms in pra
ti
e, andfewer weak learners in the optimal ensemble. LPBoost may be more sensitive toinexa
tness of the base learning algorithm. But through modi�
ation of the baseLP, we were able to obtain very good performan
e over a wide spe
trum of datasetseven in the boosting de
ision trees where the assumptions of the learning algorithmwere violated. The questions of what is the best LP formulation for boosting andthe best method for optimizing the LP remain open. Interior point 
olumn gen-eration algorithms may be mu
h more eÆ
ient. But 
learly LP formulations for
lassi�
ation and regression are tra
table using 
olumn generation, and should bethe subje
t of further resear
h.



CHAPTER 6Con
lusionTurkish musta
hes, or la
k thereof, bristle with meaning.... Musta
hessignal the di�eren
e between leftist (bushy) and rightist (drooping to the
hin), between Sunni Muslim (
lipped) and Alevi Muslim (
urling to themouth). Wall Street Journal, May 15, 1997Rules of thumb 
an help to enhan
e our lives. We probably learn these rules ofthumb through the 
ourse of experien
e. Good rules 
ould be regarded as \proverbs"or \rules to liveby". We might also have so 
alled \stereotypes" about people orpla
es. What makes someone a wise person is simply that how she/he 
an generalizewell to solve the present diÆ
ulties fa
ed using past experien
es. What degrades aperson's 
hara
ter is his/her willingness to a

ept stereotypes. It 
ould be true thatwise people have good rules in their lives to solve problems and to live in pea
e. Inany 
ase, we should listen to our 
ons
ien
e but not the stereotypes.Stereotypes are analogous to poor generalization ability of the ma
hine learn-ing models. We proposed several innovative te
hniques in this resear
h to improvethe generalization ability of the ma
hine learning models based on 
apa
ity 
ontrolby using all the available information available. Our methods span a variety oflearning methods: supervised, unsupervised and semi-supervised learning. As weindi
ated above, how well we deal with the new problems based on our experien
esimproves our lives. If we solve problems easily and in a proper way, it means thatwe have learned well from our experien
es. Our aim was to develop measures andmethods to provide the same 
on�den
e in ma
hine learning te
hniques as well.In Chapter 3, a novel method for semi-supervised learning that 
ombines as-pe
ts of supervised and unsupervised learning te
hniques was introdu
ed. The 
en-tral fo
us was to take an unsupervised 
lustering method, label ea
h 
luster withthe 
lass membership, and simultaneously optimize the mis
lassi�
ation error of theresulting 
lusters. A linear 
ombination of both 
luster dispersion and 
luster (
lass)89



90impurity measures formed the obje
tive fun
tion of learning pro
ess. The rationalebehind this approa
h was that to avoid over�tting, the unsupervised 
omponent ofthe obje
tive fun
tion a
ts as a form of regularization or 
apa
ity 
ontrol duringsupervised learning.The method allows the user to exploit any available unlabeled data duringtraining sin
e the 
luster dispersion measure does not require 
lass labels. There-fore, this approa
h 
an easily be adapted to transdu
tive inferen
e, the pro
ess of
onstru
ting a 
lassi�er using both the labeled training data and the unlabeled testdata. We used two di�erent measures for unsupervised information (
luster disper-sion): Mean Square Error (MSE) and Davies-Bouldin Index (DBI). Experimentalresults show that using DBI for 
luster dispersion instead of MSE improves trans-du
tive inferen
e. Minimizing DBI results in 
ompa
t and well separated 
lusters.DBI �nds solutions using far fewer 
lusters than MSE with mu
h greater a

ura
y.There are two types of resear
h 
ontributions in Chapter 3. These 
ontri-butions are in terms of both appli
ation of geneti
 algorithms and learning meth-ods. Although 
oating-point genome representation had been around before, it wasthe �rst time su
h representation was used to solve 
lustering problems in geneti
algorithms. We proposed a semi-supervised 
lustering method that used geneti
algorithms. The parametri
 obje
tive fun
tion allowed us to solve supervised, un-supervised and semi-supervised learning problems within the same model. The ideain
orporating 
lassi�
ation information into an unsupervised algorithm and usingthe resulting algorithm for transdu
tive inferen
e methods is appli
able to manytypes of unsupervised learning. These are also promising areas of future resear
h.The semi-supervised 
lustering method dis
ussed in Chapter 3 
an also be gen-eralized to regression problems. Sin
e ea
h 
luster de�nes a neighborhood, we 
anpredi
t the 
ontinuous variable within that neighborhood. Moreover, we 
an pre-di
t the 
ontinuous variable in the lo
al neighborhoods. One 
ould also implements
aling for variable sele
tion in the semi-supervised framework. For ea
h variable, agene must be introdu
ed to represent the s
aling fa
tor. S
aling 
an be either im-plemented within the same genome or 
an be used with another genome for s
alingfa
tors within the GA.



91We examined mathemati
al models for semi-supervised support ve
tor ma-
hines (S3VM) in Chapter 4. We proposed a general S3VM model that minimizesboth the mis
lassi�
ation error and the fun
tion 
apa
ity based on all the availabledata. Three di�erent fun
tions for penalizing unlabeled points that fall in the mar-gin were dis
ussed. Our 
omputational investigation fo
used on the minimum errorformulation for the transdu
tive inferen
e problem. We 
onverted this problem toa mixed-integer program that 
an be exa
tly solved using 
ommer
ial integer pro-gramming pa
kages. We proposed semi-supervised models both in the primal anddual spa
es. We also implemented the primal model in the lo
al neighborhoods.By using the MIP formulation with a lo
al learning algorithm, a powerful s
alabletransdu
tive inferen
e method was 
reated. Our 
omputational experiments foundthat the lo
al learning method was the most e�e
tive overall.Sin
e lo
al methods performed well, further studies are needed to determinehow best to sele
t neighborhoods and to 
hoose the parameters within the lo
alS3VM-MIP. In addition, eÆ
ient 
omputational methods for de�ning lo
ality areleft for future work. Currently, for ea
h point a lo
al model is built. The resultfor the points other than query point are dis
arded. We might, as well, keep thoseresults for future predi
tions. We also examined a non
ovex quadrati
 optimizationapproa
h to S3VM. Our 
omputational studies were less 
on
lusive using this ap-proa
h. Quadrati
 transdu
tive models are extremely slow. Better formulations arewithin the s
ope of the future work.The methods in Chapters 3 and 4 were implemented in the feature spa
e. InChapter 5, we proposed a soft margin 
lassi�er (LPBoost) in the label spa
e to solvethe boosting problem. We have shown that LP formulations of boosting are attra
-tive both theoreti
ally (in terms of generalization error bound) and 
omputationally(via 
olumn generation). The LPBoost algorithm 
an be applied to any boostingproblem formulated as an LP. We examined algorithms based on the 1-norm softmargin 
ost fun
tions for support ve
tor ma
hines. The LP optimality 
onditionsallowed us to provide explanations for how the methods work. In 
lassi�
ation, thedual variables a
t as mis
lassi�
ation 
osts. The optimal ensemble 
onsists of alinear 
ombination of weak learners that work best under the worst possible 
hoi
e



92of mis
lassi�
ation 
osts.We demonstrated the ease of adaptation to other boosting problems by ex-amining the 
on�den
e-rated and regression 
ases. Extensive 
omputational experi-ments found that the method performed well versus AdaBoost both with respe
t to
lassi�
ation quality and solution time. From an optimization perspe
tive, LPBoosthas many bene�ts over gradient-based approa
hes:� Finite termination� Numeri
al stability� Well-de�ned 
onvergen
e 
riteria� Fast algorithms in pra
ti
e� Fewer weak learners in the optimal ensembleLPBoost may be more sensitive to inexa
tness of the base learning algorithm.However, through modi�
ation of the base LP, we were able to obtain very goodperforman
e over a wide spe
trum of datasets even in the boosting de
ision treeswhere the assumptions of the learning algorithm were violated. The questions ofwhat is the best LP formulation for boosting and the best method for optimizingthe LP remain open. Adapting eÆ
ient optimization methods for 
olumn generationalgorithms su
h as interior point methods 
ould be further investigated.Resear
h in support ve
tor regression models is very a
tive. Su

essful modelssu
h as the �-Tuning model [92℄ exist to solve regression problems. The LP formula-tion of regression problems 
an also be solved by 
olumn generation te
hniques. Inaddition, for boosting regression as dis
ussed in the Barrier Boosting approa
h to asimilar formulation [80℄, the dual multipliers a
t like error residuals to be used in aregularized least square problem. However, 
learly LP formulations for 
lassi�
ationand regression are tra
table using 
olumn generation, and should be the subje
t offurther resear
h.
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