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ABSTRACTA very basi problem in mahine learning is the over�tting of empirial data. Thisproblem ours where learning proesses onstrut overly strong models to explainthe dependenies within empirial data. Often these strong models fail to performwell on the unseen data due to the strong bias towards the empirial data used inthe learning task.In order to prevent this over�tting problem, learning algorithms use di�erentremedies. For example regularization and early stopping in neural networks help toyield better models that perform well on unseen data. Pruning is used in deisiontrees. Margin maximization tehniques are used in Support Vetor Mahines. Suhsolutions, in general, are examples of apaity ontrol tehniques. By limiting therihness and the exibility of the learning method, we expet to prevent over�ttingproblem.In this researh, we introdue learning methods with new ways of handlingapaity ontrol. These methods are used in supervised, unsupervised and semi-supervised learning approahes by inorporating all the available information onhand. Semi-supervised learning an exploit both labeled and unlabeled data. We�rst propose a geneti algorithm based model that uses unsupervised learning andunlabeled data (semi-supervised learning) as a new form of apaity ontrol. Wethen use unlabeled data to inuene margin maximization in support vetor ma-hines as an alternative form of apaity ontrol based on all available information.Finally, we use apaity ontrol in the label spae for a boosting approah whihombines the outputs of the many weak learning models by linear weighting. Ingeneral, we propose semi-supervised learning models based on both labeled and un-labeled data as new ways of apaity ontrol. Methods proposed in this researh haveshown strong results on benhmark problems ompared to alternative approahes.
ix



CHAPTER 1INTRODUCTIONOften, supervised learning problems an be posed as �nding dependenies (fun-tions) between the empirial input data and the outome of the supervisor or su-pervision proess. Three important issues must be addressed arefully in a suhlearning proess (adapted from [98℄):1. To estimate a funtion from a large set of funtions.2. To estimate suh funtion using very limited number of examples (empirialdata).3. To generalize well on unseen data .Using overly strong or omplex funtions to de�ne suh dependenies an resultin over�tting of the data and failure to generalize. For any learning task, limiting therihness and the exibility of the lass of funtions being searhed is alled apaityontrol. By ontrolling the apaity, we an pratially avoid the over�tting problemon empirial data.The lassial statistial approahes suh as Maximum Likelihood (ML) methoddo not solve issues listed above. Therefore many methods suh as Neural Networks(NN) and deision trees have been developed in learning framework to address theseissues sine 1960's. Classial approah uses ML for density estimation, disriminantanalysis, and regression models. Sine ML might fail even in the simple ases suh asestimating the mixture of normal densities, lassial parametri models might per-form poorly in the learning proess as measured by generalization on unseen data.On the other hand, non-parametri methods suh as Parzen windows are onsideredto be more desirable in terms of estimating a density from a wide lasses of densitiesompared to the parametri methods and have better asymptoti rate of onver-gene espeially for smooth densities. Although they have remarkable asymptotiproperties, experimental studies have shown that non-parametri methods did not1



2perform signi�antly better than parametri methods when applied to very limitednumber of data points [98℄.There are many forms of apaity ontrol, for example regularization and earlystopping in NN. In Bayesian inferene, apaity ontrol is performed via strong a pri-ori. Spei�ally, Bayesian approahes perform well, if the funtion being estimatedmathes with a priori lass of the funtions provided in the Bayesian inferene. Inaddition, a priori probability distribution of these funtions should reet the real-ity. Inomplete representation of the reality might slow down the onvergene speedof Bayesian inferene. Thus, Bayesian approah requires strong a priori to ontrolthe apaity of the learning proess.Supervised learning methods, in general, minimize a loss funtion based onthe disrepany between results from the model and the response from the super-visor. Minimizing this loss funtion just based on the empirial data an result inover�tting. Strutural Risk Minimization (SRM)was introdued by statistial learn-ing theory to �nd a trade-o� between empirial risk and funtional omplexity [98℄.Pratially, SRM implements apaity ontrol through a omplexity penalty term[41℄. In SRM, a struture is given as weak a priori to the learning proess. SRMthen �nds optimal parameters for suh a struture. For example in lassi�ation,aording to the priniples of SRM, for a �xed empirial risk level, �nding the largestmargin of separation that exists within the data prevents over�tting. In ontrast,Bayesian inferene has an impliit apaity ontrol depending heavily on the stronga priori probability funtion provided by the user thus requires human interfae inlearning proess.In this researh, di�erent ways of apaity ontrol are proposed based on in-orporating all the available information on hand. For example if we are performinga lassi�ation task based on labeled training data, we would like to exploit anyadditional unlabeled data. The proposed methods perform apaity ontrol on su-pervised and \semi-supervised" learning.Typially learning tasks are divided into two ategories: supervised learningand unsupervised learning. In supervised learning, training is done using data pro-vided with the labels (e.g. dependent variable) and the resulting lassi�er is used



3to lassify unlabeled data (e.g. data with unknown dependent variable). In thisase, the expert needs to de�ne lasses expliitly and needs to label data prior tothe training phase. The results are usually ompared by ranking the generalizationability and auray on both labeled and unlabeled datasets.Learning without known labels is known as unsupervised learning. Clusteringis an important example of unsupervised learning methods. Clustering is simply de-�ned as grouping similar objets. In lustering, lasses or groups of the objets arenot known a priori but rather an emergent property of the data. Clustering algo-rithms are valuable for disovering patterns in data. In many domains, the diÆultyof labeling data and the lak of prior knowledge about lasses sometimes limit us touse lustering algorithms to analyze and to group the data. For example, in order tolassify a gene, a biohemist might have to run very expensive and time onsumingexperiments. By onduting luster analysis, similar genes an be grouped togetherand results an be summarized to disover hidden relationships. Thus, useful in-formation an be gathered from lustering even in the ase of lak of informationabout the domain itself. A number of lustering algorithms are summarized in [58℄.But most of them su�er from the following problems:(1) Choosing and validatingthe number of lusters and (2) Ensuring that the algorithmi �ndings represent thereality. Moreover,as stated in [13℄, k-means like lustering algorithms also su�erfrom the problem of evenly distributing the points among the lusters, sine a sumof squares type of objetive funtion is minimized. To form neessary foundation forsupervised and unsupervised learning, we give a brief literature review in Chapter2. Depending on appliation domain, both supervised and unsupervised learningmethods have superior properties ompared to the other one. They also su�er fromsome weaknesses. For example, the validation of lusters found in luster analysisould be an ill-de�ned proess. In supervised learning, the diÆulty in interpretingthe lassi�ation results (unless we use a deision-tree like method) may make resultsless useful.To avoid these weaknesses and to use superior properties, a semi-supervisedapproah is proposed in this researh. Semi-supervised learning is de�ned as om-



4bining both labeled and unlabeled data to aomplish a learning task. By using asemi-supervised approah, we an ontrol the apaity of a learning funtion basedon all the information from the data. One possible way of doing is introduing partialsupervision into unsupervised learning. Using the labeled data in semi-supervisedlearning will yield meaningful lusters and these lusters will be homogeneous. Asemi-supervised lustering algorithm was introdued in [76℄. It has been suess-fully applied to the segmentation of magneti resonane images (MRI) as reportedin [13℄ and [95℄. Due to the diÆulty of the labeling the data in the ase of im-age segmentation, very limited number of points were labeled in [13℄. A partiallysupervised lustering algorithm [13℄ is introdued to minimize a weighted sum ofsquare objetive funtion formed by using both the labeled and unlabeled data. Aniterative sheme ontinues until no improvement is made on the objetive more thana predetermined threshold. The prior weights and labels are determined by experts'knowledge. The authors reported better results by using semi-supervised fuzzy-means algorithm ompared to traditional fuzzy -means algorithms on both arti-�ial and MRI data [13℄. Even in the ase of very few labeled data, semi-supervisedmethod improved results.In Chapter 3, we introdue a new way of apaity ontrol based on a semi-supervised lustering approah implemented with Geneti Algorithms (GA). Dataare lustered using an unsupervised learning tehnique biased toward produinglusters as pure as possible in terms of lass distribution. These lusters an thenbe used to predit the lass of future points. One key additional bene�t of thisapproah is that it allows unlabeled data with unknown lass to be used to improvelassi�ation auray. The objetive funtion of a traditional lustering tehnique,luster dispersion in the k-means algorithm, is modi�ed to minimize both the withinluster variane of the input attributes and a measure of luster impurity based onthe lass labels. By ontrast to k-means lustering algorithm, this implementation�nds a near optimum number of lusters for a given parameter set at the end of thelearning proess. This means that optimum number of lusters is not a parameterin the model, however it is a produt of the learning proess. Minimizing the withinluster variane of the examples is a form of apaity ontrol to prevent over�tting.



5The GA method utilizes a parametri �tness funtion based on both lusterdispersion metri suh as Davies-Bouldin Index (DBI) [36℄ and a lass impuritymeasure suh as the Gini index [24℄. Having a parametri objetive allows theuser to solve lassi�ation, lustering and semi-supervised learning problems byusing an appropriate parameter set. The experimental results show that using thelass information often improves the generalization ability ompared to unsupervisedmethods based only on the input attributes. Results from two di�erent lusterdispersion measures, Mean Square Error (MSE) and Davies-Bouldin Index (DBI),are reported. Results show that using DBI in transdutive model gives an advantageto improve the overall auray and the quality of the lusters found by the GAmodel. Benhmark studies also indiate that the method performs very well evenwhen few training examples are available.Training using information from unlabeled data might help to improve lassi-�ation auray as well. Hene an alternative approah in semi-supervised learningis to use unlabeled data in supervised learning as proposed by Vapnik in the ontextof transdution [97℄. The key task in transdution is to estimate the funtion valuesof the ertain points instead of estimating funtion itself everywhere. This ontrastswith indution, estimating funtion everywhere, sine transdution estimates thelabels in the working set whih ontains unlabeled data by implementing struturalrisk minimization on all the available information from both the training and theworking sets. The apaity ontrol is provided by margin maximization where themargin is measured on both the labeled and unlabeled data. Sine we inlude theworking set into our model and make use of it, one would expet to get better per-formane in terms of auray whih is ruial for business deisions suh as reditline issue, reviewing mortgage appliations and other ustomer related �nanial ser-vies. On the other hand, by inluding extra points from unlabeled data, we areable to better understanding underlying input (population) distribution.In Chapter 4, we introdue a semi-supervised support vetor mahine (S3VM)method for apaity ontrol. We use S3VM to solve the overall risk minimization(ORM) problem posed by Vapnik. The ORM problem is to estimate the value of alassi�ation funtion at the given points in the unlabeled working set. This on-



6trasts with the standard learning problem of empirial risk minimization (ERM)whih estimates the lassi�ation funtion at all the possible values. We propose ageneral S3VM model that minimizes both the mislassi�ation error and the fun-tion apaity based on all the available data. We show how the S3VM model for1-norm linear support vetor mahines an be onverted to a mixed-integer program(S3VM-MIP) and then solved exatly using integer programming. We implementedthis (S3VM-MIP) in AMPL and used CPLEX as an integer programming solver. Re-sults of S3VM-MIP and the standard ERM approahes are ompared on eleven datasets. Our omputational results support the statistial learning theory results ontransdution showing that inorporating the working set data improves generaliza-tion when insuÆient training information is available. In every ase, S3VM eitherimproved or showed no signi�ant di�erene in generalization ompared to the ERMapproah. This was the �rst known model to solve transdution problem suesfullyin the literature [9℄.In Chapter 4, we also propose two other variants of the S3VM . The �rstapproah is to use loal learning to improve the onvergene speed of the S3VM.The advantages of using loal learning models are very well disussed in [1℄. Thebasi idea is to implement S3VM in the k-nearest neighborhood of points whihresults in smaller integer-programming models to solve. We report improved resultsompared to S3VM for the same datasets. The loal learning approah is salableto very large datasets. In the seond approah, we investigate a gradient desentalgorithm for the quadrati transdution problem. The numerial results based onproposed desent algorithm and the transdutive algorithm based on SVM-Light [60℄do not onlusively support the transdutive approah. In general, algorithms forthe quadrati transdutive models are muh slower and prone to loal minima thanthose for the linear models. Our experimental study on these statistial learningmethods indiates that inorporating the working set data for the apaity ontrolan improve generalization ability, but the improvements were not large.In Chapter 5, we again fous on apaity ontrol in supervised learning but ina di�erent ontext. In Chapter 4, the proposed algorithms perform apaity ontrolin the feature spae (input data). In Chapter 5, we spei�ally fous on apaity



7ontrol in the label spae using a boosting approah. The idea in boosting is touse a linear ombination of many weak lassi�ation or regression funtions (alledweak learners), instead of one strong funtion. The resulting ensemble funtionfrequently performs muh better than any single funtion. Reent works by severalpeople have shown boosting an be viewed as margin maximization in funtion spae[87, 51℄. Di�erent boosting methods (e.g. AdaBoost [87℄) an be viewed as gradientdesent methods that minimize margin ost funtions. In Chapter 5, we address theproblem of the sensitivity of this funtion to outliers by adapting the soft marginost funtion of support vetor mahines to boosting. Minimizing this soft marginerror funtion diretly optimizes a generalization error bound.We formulate the problem as if all the possible weak learners had alreadybeen generated. The lass labels produed by the weak learners beome the newfeature spae of the problem. The boosting task beomes to onstrut a learningfuntion in the label spae that minimizes lassi�ation error and maximizes thesoft margin. The resulting linear program an be eÆiently solved using olumngeneration tehniques developed for large-sale optimization problems. The rows ofthe linear program eah orresponding to one weak learner are generated as needed.The dual variables of the linear program provide the mislassi�ation osts neededby the learning mahine. The resulting \LPBoost" algorithm has many attrativeproperties. The algorithm has well de�ned onvergene riteria. It onverges in a�nite number of iterations to a globally optimal solution. In omputational exper-iments, the algorithm performs very well both in terms of omputational time andgeneralization ability. The algorithm requires very few iterations. Thus few weaklearners are atually generated and even fewer appear in the optimal learning ensem-ble. Numerial experiments are onduted by using both deision stumps and C4.5[79℄. The performane of the sparse learning ensembles produed was ompetitivewith the other boosting approahes.The basi idea in our researh is to use all the available information in thelearning task to improve the generalization ability through the apaity ontrolwhether extra information is in the form of raw data or outomes from severalmodels. We explore new types of the apaity ontrol in the ontext of supervised



8and semi-supervised learning. The work here fouses on the lassi�ation problemwhere the labels are hosen from a �nite set. In pratie, the ideas presented in thisresearh an be generalized to the regression problems where the data labels omefrom a ontinuous domain. Ideas for extensions to regression are summarized in theonlusion hapter.



CHAPTER 2A Brief Literature Review on Data Analysis2.1 IntrodutionHistorially statistis had a great impat on the traditional data analysis teh-niques. For example Fisher's Disriminant Analysis opened a new era in sienti�researh ativities. Indeed sienti� researh depends on a solid and profound dataand fat analysis. Classi�ation has been used widely as a tool and representationtehnique in sienti� researh sine anient times. In sienti� researh, data fre-quently plays a entral role. Depending on data an appropriate analysis tehniquemay be used to ome up with dependable onlusions. We will briey summarizetwo major data analysis tehniques in this hapter: luster analysis based on unsu-pervised learning and lassi�ation based on supervised learning. Then, we look ata new area of data analysis - semi-supervised learning.Cluster analysis is one of the very important unspervised learning methods. Itis used in various researh areas suh as life, soial and natural sienes. Thus, we an�nd di�erent de�nitions for the terms luster and luster analysis in the literaturebased on various appliation areas. Indeed, sientists and researhers have givendi�erent de�nitions to the luster analysis for the purpose of de�ning their ownresearh problems in a proper manner. At the most general level, a luster onsistsof similar objets olleted or grouped together. Everitt douments [45℄ some of thede�nitions of a luster:� A luster is a set of entities whih are alike suh that entities from di�erentlusters are not alike.� A luster is an aggregation of the points in the test spae suh that the distanebetween any two points in the luster is less than the distane between anytwo points in the luster and any point not in it.� Clusters may be desribed as onneted regions of a multi-dimensional spaeontaining a relatively high density of points.9



10Aording to Hansen and Jaumard [53℄, lusters are required to be homoge-neous and/or well separated. Homogeneity means that entities within the sameluster should resemble one another and separation means that entities in di�erentlusters should di�er one from the other.As indiated in [69℄, luster analysis is mainly used for the data analysis as amultivariate statistial tool. It is also used for data summarization and ompres-sion. Storage and retrieval systems in hardware tehnologies also implement lusteranalysis to improve aess time to stored information. There are also many pratialappliations of luster analysis in pattern reognition.Besides luster analysis as an example of unsupervised learning, we will givebrief explanation of some lassi�ation tehniques as a main method in supervisedlearning, partiularly Support Vetor Mahines (SVM) to omplete neessary bak-ground information. In their early work, Vapnik and Chervonenkis developed theoptimal separating plane tehnique for lassi�ation and later on Vapnik introduedthe idea of strutural risk minimization whih provides theoretial results to givethe generalization error bounds of a separating hyperplane. The strutural riskminimization and optimal separating hyperplane form the basis of SVM. Indeed,SVM is a logial extension to the optimal separating hyperplanes method. A SVMmaps the input spae into a high-dimensional feature spae through some non-linearmapping (kernel funtions) hosen a priori and then onstruts the optimal separat-ing hyperplane in the feature spae. This mapping makes it possible to onstrutlinear deision surfaes in the feature spae whih orrespond to non-linear deisionsurfaes in the input spae [93℄. Having the ability to form non-linear deision sur-faes in input spae makes SVM a promising lassi�ation tehnique as a statistiallearning method. A variation of SVM for data analysis is introdued in this studyto do semi-supervised data analysis.The outline of the rest of this hapter is follows. Setion 2.2 fouses on lus-ter analysis, �rst, general approahes in luster analysis are summarized. Later,examples of luster analysis implementations are given in Setion 2.2. We explainbriey some lassi�ation tehniques inluding deision trees in Setion 2.3 of thishapter. In Setion 2.4, SVM method is explained in some details as an alternative



11learning method to the traditional ones. In Setion 2.5, the semi-supervised learningproblem is disussed in general and some related works to semi-supervised learningare reviewed.2.2 Unsupervised Data Analysis MethodsAs we mention above, a luster is a group of similar objets based on a metri.Similarity or homogeneity is an important measure for the objets in the sameluster. On the other hand, we an also de�ne the metri used in the luster analysisin a way to minimize dissimilarity (dispersion) within the lusters. Like any otherdata analysis method, luster analysis require some steps to follow. In their paper[53℄, Hansen and Jaumard approah luster analysis from a mathematial point ofview. Steps of a luster analysis in a ommon framework are given below.� Sample: Selet a sample S of n entities among whih lusters to be foundwhere eah entity is a vetor.� Data: Observe or measure p harateristi of the entities of S. This yields an� p data matrix X.� Dissimilarities from the matrix X a n � n matrix D = (dkl) of dissimilaritiesbetween entities where dkl � 0; dkk = 0; dkl = dlk.� Constraints: Choose the type of lustering desired. Speify also further on-straints on the lusters, if any.� Criterion: Choose a riterion to express homogeneity and/or separation oflusters in the lustering to be found.� Algorithm: Choose or design an algorithm for the problem de�ned in Con-straints and Criterion items.� Computation: Apply the hosen algorithm to matrix D = (dkl).� Interpretation: Apply formal or informal tests to selet the best lustering.Desribe lusters by their desriptive statistis.



12Some remarks ould be made about dissimilarities at this point. First, dissim-ilarities may be omputed from the soures other than a matrix of measurements X.Seond, for some methods only the order of dissimilarities matters. Third, lusteranalysis is not the only method to study dissimilarities. Fourth, instead of om-puting dissimilarities, one an perform a di�erent type of luster analysis (diretlustering) whih requires using the matrix X. The lusters found by diret lus-tering orrespond to onepts. Reently, oneptual lustering has beome a veryative �eld of researh [42, 84℄.There are basially �ve major types of lustering tehniques mentioned in[53℄: subset, partition, paking, overing, and hierarhy. More emphasis is givenon the hierarhial lustering algorithms from the mathematial programming pointof view. There are two main types of hierarhial lustering. First one is theagglomerative and seond one is the divisive hierarhial lustering algorithm. Somealgorithms for partitioning type of lustering from the dynami programming, graphtheoretial, branh and bound and utting plane approahes are also listed.One of the most ited referenes in the luster analysis literature is written byJain and Dubes [58℄. In this book, lustering is de�ned as an exlusive and unsuper-vised lassi�ation. Clustering is exlusive in a sense eah objet belongs to the onlyone luster, overlapping is not allowed. It is unsupervised, beause objets are notlabeled prior to implementation. Unsupervised lassi�ation (lustering) branhesinto two types of lassi�ation: hierarhial and partitional. Several algorithms anbe proposed to express the same exlusive, unsupervised lassi�ation (lustering):� Agglomerative vs. divisive: An agglomerative hierarhial lustering plaeseah objet in its own luster and gradually merges these atomi lustersinto larger ones. Thus, it is a bottom-top algorithm. A divisive hierarhiallustering algorithm, in the ontrast, starts with one luster and then splitsthis one down further. Thus, it is a top-down algorithm.� Serial vs. simultaneous: Serial proedures handle the objets (patterns) oneby one in an on-line proess. Simultaneous proedures handle all the objetstogether in a bath proess.



13� Monotheti vs. polytheti: A monotheti lustering algorithm uses the fea-tures (variables) one at a time.� Graph theory vs. matrix algebra: Some algorithms are expressed in terms ofthe graph theory. Some might be onstruted algebraially espeially usingthe vetor algebra.Two most known algorithms from the graph theory are single-link and omplete-link algorithms. Single-link lusters are haraterized as maximally onneted sub-graphs, whereas omplete-link lusters are liques or maximally omplete subgraphs.In partitional lustering, K-means [58℄ like algorithms are highly used and verypopular. This kind of algorithms has loal onvergene. Usually the objetive is tominimize mean square error within lusters and to maximize it between lusters.The most important step in luster analysis is the interpretation of the results.One important point should be addressed arefully: the validity of lusters. Problemmight our if di�erent luster methods yield di�erent lusters whih is high likely.Whih partition is the orret one? Another soure of doubt in lustering resultsis the number of lusters found within data. How do we know that whih numberis the orret one? Sine there is almost no way to know the orret answers tothese two questions, heuristi methods have been developed. Both global and loalheuristi measures are given in [57℄.Cluster analysis has been applied suessfully in various disiplines. Patternreognition is the one of the major �elds. In [25℄, Buhmann summarizes ExpetationMaximization (EM) type algorithms for data lustering and data visualization pur-poses. EM algorithms are stohasti optimization algorithms. Buhmann doumentstwo oneptual approahes to luster analysis.� Parameter estimation of the mixture models by parametri statistis.� Vetor quantization of a data set by ombinatorial optimization.Parametri statistis assumes that noisy data have been generated by an un-known number of qualitatively similar stohasti proesses. Eah proess is har-aterized by a unimodal probability density whih is modeled by a parameterizedmixture model e.g. Gaussian mixtures.



14Vetor quantization aims at �nding a partition of the data set based an opti-mization priniple. Partitioning type of lustering, aording to Buhmann, arises intwo di�erent forms depending on the data format.� Central lustering of the vetorial data.� Pairwise lustering of the proximity data (dissimilarities).In [25℄, Buhmann introdues �ve EM type algorithms for entroid estimation,pairwise lustering, and Multi-Dimensional Saling (MDS) by deterministi anneal-ing, struture preserving MDS. All algorithms have two ommon steps:� E-like step: The expetation value of the omplete data log-likelihood is al-ulated and onditioned on the observed data and the parameter estimates.This yields the expeted assignment of data to mixture omponents.� M-like step: The likelihood maximization step estimates the mixture param-eters, e.g. the enters and the varianes of the Gaussians.In [55℄, the authors expand the idea in [25℄ to ative data seletion for lus-tering. The authors propose EM-like iteration sheme with the E-step replaed bythe lustering algorithm itself. They also propose a riterion for the ative dataseletion. They use this sheme in the data query frame. They report that thelustering ost dereases when this riterion is implemented.A rigorous mathematial framework of Deterministi Annealing (DA) andMean Field Approximation (MFA) is presented in [56℄. The authors use the resultto develop algorithms for an unsupervised texture segmentation whih is equivalentto pairwise lustering problem, one an appropriate homogeneity measure has beenidenti�ed. They ompare the results of these algorithms with the other well-knownones. The optimization method used ombines advantages of simulated annealingwith the eÆieny of a deterministi proedure. It has been applied suessfully toa variety of ombinatorial optimization problems and omputer vision tasks.Simulated annealing, a stohasti optimization strategy, has beome very pop-ular in reent years to solve image proessing tasks. The random searh is modeledby an inhomogeneous disrete-time Markov-hain whih stohastially samples the



15solution spae. The major disadvantage in simulated annealing is that the stohas-ti tehniques might be extremely slow. But on the other hand, a slow annealingproess yields very high quality partitions. The key idea in DA is to alulate theexpetations of some relevant parameters analytially. Authors extend the idea ofDA to mean�eld annealing and they propose an algorithm for texture segmentationby using MFA. Gibbs sampling plays an important role in both DA and MFA.Fisher, in [46℄, introdues an inremental oneptual lustering algorithm. Aoneptual lustering system aepts a set of objet desriptions and produes alassi�ation sheme over the observations. This is an unsupervised learning task.It uses an evaluation funtion to disover lasses with good oneptual desriptions.Thus, it is a type of learning by observation (as opposed to learning from examples)and it is an important way of summarizing the data in understandable manner.COBWEB , the algorithm proposed in [46℄, is an inremental and hierarhial lus-tering algorithm. It yields understandable tree strutures. Inremental learninghelps reduing the ost of lustering while preserving the quality of the oneptualdesription.Clustering problems have been studied and applied in fuzzy logi. Bezdekanalyzed data supplied by NASA [15℄. The data set was olleted remotely fromthe astronauts during spae missions. He implemented a -means fuzzy lusteringalgorithm whih resembles the k-means algorithms. Overlapping is allowed in fuzzylustering approah by fuzzy membership funtion. Thus an objet might belong tomore than one lusters. Fuzzy -means lustering algorithm has some limitationse.g. it works for a very limited number (� 10) of lusters. But he reports that thequality of lusters are noteworthy and the error rates are very low.Reently, luster analysis has attrated a lot of attention from the area ofdata mining. One task in data mining is the searh for hidden patterns that mayexist in large databases. One appliation of luster analysis is to \mine" spatialdata. Ng and Han have developed the CLARANS [73℄ based on a randomizedsearh. Experimental results are promising. Spatial data mining helps to extratinteresting features, to apture intrinsi relationship between spatial and non-spatialdata, to present the data regularity onisely, and to reorganize spatial databases



16to aommodate data semantis in order to improve performane.We briey summarized luster analysis and its appliations above as an ex-ample of unsupervised learning. Our fous in this researh also requires knowledgeon supervised learning methods. We summarize some lassi�ation methods in thenext setion.2.3 Supervised Data Analysis MethodsClassi�ation methods have been used and studied very muh in the mahinelearning literature as well as in the other applied sienes and engineering. Amongthese methods tree-like ones are very ommon. Thus, deision trees have reeiveda lot of attention from di�erent disiplines. One of the earliest and well-knownalgorithms is ID3 developed by Quinlan. In [77℄, Quinlan introdues ID3 whih is atop-down deision tree algorithm. A top-down algorithm starts from the root andsplits data until it reahes the termination nodes. ID3 performs a non-inrementallearning from examples. It branhes the tree using information gain as the splittingriteria. The information gain is de�ned by the information theory and algorithmheks whether it dereases or not at a given node by splitting further. ID3 hasbeen used extensively, sine it was introdued. Reently other ID3-like algorithmshave been developed and applied suessfully [78℄. The aims in developing newalgorithms are �nding better deisions, having faster algorithms, and getting moreaurate learning strategies. C4.5 [78℄ is a very suessful deision tree method.One of the important features of C4.5 is to enable the usage of mislassi�ationosts. This is espeially very important for the boosting appliations and also forthe unbalaned datasets.Deision trees have also been used for regression. A regression tree is a tree-strutured regression approah whih allows omplex models to be onstruted fromseveral lower order models. The deision tree partitions the data and a regressionmodel is onstruted in eah partition. These models an be kept low order andhene be more interpretable. Regression trees also have the advantage that thesimple form of the �tted funtion in eah terminal node permits easily the studyof the statistial properties of the model. In [29℄, Chaudhuri, Lu, Loh, and Yang



17propose a generalized regression tree algorithm. This method simply blends a tree-strutured nonparametri regression and an adaptive reursive partitioning withmaximum likelihood estimation. Traditional regression trees suh as CART [24℄(developed by Breiman, Friedman, Ulshen, and Stone) partition the regressor spaeand onstant models are onstruted at the leaf nodes of the regression trees. Inessene, sine models are onstant at the leaf nodes, deision tree regression an beinterpreted as a histogram approximation of the response surfae. Sine lassi�ationis a speial ase of the regression, CART is also used mostly for the lassi�ationpurposes.A large number of deision tree tehniques have been proposed by the manyauthors in literature. Due to the lak of spae, we will mention briey a few of them.Lazy Deision Trees [49℄ were proposed by Friedman, Kohavi, and Yun in order tooverome some problems faed by traditional deision trees. Top-down deisiontree algorithms implement a greedy approah that attempts to �nd a small tree.Most of the seletion measures are based on one level of lookahead. Aording toauthors, two related problems with the representation struture are the repliationand the fragmentation. The repliation problem fores dupliation of the subtrees indisjuntive onepts. The fragmentation problem auses partitioning the data intosmaller fragments. In order to avoid fragmentation problem as muh as possible, theauthors hose a test riteria that is a binary split on a single value and have allowedalgorithm to split on any feature value is not equal to the instane's value. Thisalgorithm is slow ompared to the top-down deision trees. The indution proessin lazy deision trees is delayed until a test instane is given. Thus it is a querybased method (a form of loal learning).In deision tree onstrution, splitting riteria plays an important role. Uni-variate splits are ommon approah in the deision tree onstrution. In [6℄, Bennettand Blue propose a multivariate split approah for a �xed deision tree struture.A noteworthy point in this artile is that the deision tree struture is �xed as inneural networks. Typially in implementation of deision trees, during the trainingphase a maximal tree is grown. In the pruning phase, the tree size is redued to anoptimal level by utting out unneessary branhes. The proposed method in [6℄ does



18not require to implement any pruning algorithm in it, sine it is a �xed struture.Beause of multivariate fashion, method �nds better deision rules and performsbetter in terms of overall auray. Bennett and Blue suggest using di�erent opti-mization and searh algorithms to solve the mathematial programming model foronstruting suh a deision tree.One of the approahes for solving lassi�ation problem is the nearest neigh-bor method whih is a form of loal learning. Determining a proper metri playsvery important role in this type of algorithms. In pratie Eulidian-like distanesare used mostly. In [48℄, Friedman proposes a exible metri and related two algo-rithms to solve lassi�ation problems. He gives a solid statistial bakground onlassi�ation problems. The urse of dimensionality, variable subset seletion andreursive partitioning are disussed from the nearest neighbor method point of view,prior to developing algorithms in this artile. The mahete is a reursive partition-ing algorithm whih splits only the most relevant variable. This way is more likea winner-take-all situation. In the opposite, the sythe tries to solve bias problemreated by splitting by the most relevant variable. Various types of the splittingriteria suh as purity index are disussed in [48℄.Although numerous number of publiations exist in the �eld of lustering andlassi�ation, very limited number of papers were reviewed in this hapter. SupportVetor Mahines has beome very popular reently as a new way of mahine learningmethod. Following setion fouses on the theory of SVM and then some appliationsof them are summarized briey.2.4 Support Vetor MahinesThe lassi�ation problem has been studied extensively sine Fisher intro-dued the notion of linear disrimination in mid 30's. Later, in the 60's Rosenblattintrodued the pereptron as a new way of mahine learning. Until bak-propagationwas disovered by Rumelhart, Hinton, and Williams [83℄ in mid 80's, the perep-tron method ould not get enough attention beause of some theoreti limitations.Sine the mid 80's neural networks have beome very popular in the �eld of pat-tern reognition and mahine learning. Neural networks are a modi�ation of the



19pereptron. Sine the pereptron onstruts a linear deision funtion, NN imple-ment piee-wise linear type deision funtions. A new type of learning method wasonstruted by Vapnik and Cortes alled The Support Vetor Mahines [32℄. SVMmethod implements the following idea: It maps input spae into some high dimen-sional feature spae. Then it onstruts a linear deision surfae in this feature spaewhih orresponds to a non-linear deision surfae in the original input spae.Two problems arise in this sheme: one is oneptual and the other one istehnial. The oneptual problem is how to �nd a separating hyperplane that willgeneralize well. The dimensionality of the feature spae will be huge and someseparating planes will not neessarily generalize well. The tehnial problem is howomputationally to treat suh a high dimensional feature spae (e.g. if a polynomialdegree of 4 or 5 mapping in 200 dimensional input spae is used, SVM may needto onstrut a billion dimensional feature spae). Part of the oneptual problemwas solved in 1965 for linearly separable ases by the optimal hyperplanes (maximalmargin) method. Cortes and Vapnik [32℄ generalize this for linearly inseparableases. In the optimal hyperplane tehnique, it was shown that if training vetorsare separated without error, the expetation of ommitting error for test vetorsis bounded by the ratio between the expetation of the number of support vetorsand the number of training vetors, also alled VC dimension. The generalizationability of the learning mahine depends on the apaity of the set of funtions,partiularly VC dimension of these funtions rather than the dimensionality of theinput spae. Funtions with low apaity will generalize well on the unseen dataregardless of the dimensionality of the data [99℄. When the apaity is too large, thetraining dataset annot be modeled properly due to the under�tting problem. Onthe other hand, If the apaity is too small, underlying model will over�t the trainingdataset. Geometrially, we an explain this phenomenon by large margin lassi�ers.The larger apaity in the set of funtions used will result in larger margin (\fat")lassi�ers. Using a set of funtions with low apaity will yield \skinny" marginswith poor generalization [34℄.Having addressed a solution to the oneptual problem, in 1992 it was shownthat the order of operations for onstruting a deision funtion an be interhanged



20[19℄. The original method required a non-linear transformation of input vetors to ahigher dimensional spae followed by inner produts with support vetors in the highdimensional spae. By using onvolutions of the inner produt in a Hilbert spae, thehigh dimensional mapping and inner produt an be performed in a single operation.The resulting method is alled a kernel based method. This type of transformationenables the method to onstrut the rih lasses of deision surfaes. Cortes andVapnik all this type of mahine learning Support Vetor Mahines.Spei�ally, the optimal hyperplane method relies on the transformation of thep-dimensional input vetor, xi, into N -dimensional feature vetor through a hoieof N-dimensional vetor funtion, �, where � : Rp� > RN . An N dimensionalseparator w and a bias, b, is then onstruted for the set of transformed vetors�(xi) = �1(xi); �2(xi); :::; �N(xi) i = 1:::n (2.1)where n is the number of observations (input vetors).Classi�ation of the unknown vetor, x, is done by heking the sign of thefuntion f(x) = w � �(x) + b (2.2)Aording to the properties of soft margin lassi�er method, w an be writtenas w = nXi=1 yi�i�(xi) (2.3)where yi is the label of ith input vetor, �i is the lagrange multiplier for ith inputvetor. The linearity of produt implies thenf(x) = nXi=1 yi�i�(x)�(xi) + b (2.4)The points xi with �i > 0 are known as support vetors, sine these are theonly points that inuene the solution. The ore of the support vetor mahines is



21the representation of the inner produt as a kernel funtion�(u)�(v) � K(u; v): (2.5)The above representation is explained by Hilbert-Shmidt Theory [96℄: Anysymmetri funtion K(u; v) with K(u; v) 2 L2 an be expanded in the formK(u; v) = 1Xi=1 �i�i�i(u)�i(v) (2.6)where �i 2 R and �i are eigenvalues and eigenfuntionsZ K(u; v)�i(u)du = �i�i(v) (2.7)of the integral operator de�ned by the kernel, K(u; v). The kernel funtion an beseleted based on the problem domain, but there is no ommon rule for using theright kernel funtion. One of the most popular kernel funtions is the polynomiallassi�er degree of d, K(u; v) = (uv + 1)d. SVM with radial basis funtion an beimplemented by employing the following kernel funtionK(u; v) = expf�ku� vk22�2 g: (2.8)It is shown that support vetor mahines have the ability to generalize well.The SVM method has been applied reently to di�erent lassi�ation problemssuessfully [99℄. A omparison of SVM with Gaussian Kernels to Radial BasisFuntion lassi�ers is given in [91℄. The authors ompare a K-means GaussianRBF network with an SVM and a hybrid method. The hybrid method �nds enterby using SVM and then implements Gaussian RBF network. The hybrid methodperformed best most of the time in their experiments. The similarities betweenSVMs and other linear models suh as linear disriminant, linear pereptron andother linear models were reported in [52℄. Basially, similarities exist between theobjetive funtions and gradient desent algorithms were used to optimize suhobjetive funtions. These methods also show similarities in the way the duality



22and probabilisti interpretations of the sores were exploited [52℄.SVM approah has been applied to onstruting deision trees by Bennett andBlue. In [7℄, they ompare SVM with Global Tree Optimization, a hybrid modelof SVM and GTO and some well known deision tree methods suh as C4.5. Theyreport enouraging results for the GTO/SVM method. In most of the experiments,the GTO/SVM method performed the best or very lose to the best.The SVM method has not only been applied to lassi�ation problems. In-deed, It has also been adapted to a variety of problems suh as non-linear prinipalomponent analysis, regression analysis and funtional approximation [96℄. The re-sults from this researh are promising. Sine it is a new researh area, there are stillthings need to be done. Kernel PCA and non-linear PCA in feature spae are �rstintrodued in [90, 89℄. The entral fous in kernel PCA is to �nd prinipal ompo-nents in the higher dimensional feature spae rather than to �nd in the input spae(linear PCA). The hallenging issue in this approah is to �nd eigenvalues of thekernelized ovariane matrix. Algebrai deompositions are given in [5℄. Althoughthe method is a non-linear PCA, non-linear optimization is never used in any ofthe steps. Sine the method does not look for the eigenvalues in the full spae, itis omputationally omparable with the linear PCA. Another advantage of kernelPCA is to �nd the prinipal omponents in a rih and high dimensional featurespae. This allows inluding non-linear terms into the prinipal omponents [5℄.Other implementations are provided by authors in various artiles. The im-proving the auray and speed of SVM is studied by Burges and Sh�olkopf in[26℄. Vapnik, Golowih and Smola onstrut mathematis behind the funtional ap-proximation and regression estimation by using SVM [101℄. They also report someexperimental results on simulated data. Support vetor regression mahines werestudied by Druker, Burges, Kaufman, Smola & Vapnik in [43℄. There have beenmany other appliations of SVM reently. Due to the spae limitation, we mentionsome of these appliations. We will introdue semi-supervised learning approah inthe next setion.
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Figure 2.1: Indutive Learning2.5 Semi-supervised ApproahAlthough the idea of inorporating unlabeled data into the learning proesswith the labeled data goes bak to the early 80's [97℄, most of the applied tehniquesin mahine learning deals with the labeled data in supervised learning. The unla-beled data is used in unsupervised learning. But easily available unlabeled data inmany domains (e.g. web-based text data) [74, 67, 18℄ makes us to de�ne a new typeof learning. Beause of this, ombining labeled and unlabeled data in the learningproess has gotten some attention from mahine learning researhers.As we stated in Chapter 1, we de�ne semi-supervised learning problem as ause of a training set of the points with known lasses and the working set of pointswithout the lass labels, onstruting a lassi�er to label the working set. The idea ofinorporating unlabeled data into supervised learning goes bak to late 70s and early80s [97, 100℄. One version of semi-supervised learning is the transdution de�nedby Vapnik [99℄. Unlike the indutive learning, transdution inludes unlabeled datain a lassi�ation sheme in the learning phase. As it is depited in Figure 2.1,indutive learning �rst, estimates a lassi�er funtion using labeled data (trainingset) and some prior knowledge about domain, and �nally by using this estimatedfuntion, we lassify unlabeled data in the dedution phase.On the other hand, transdution does not require a lassi�er funtion estima-tion everywhere. Transdution involves ombining both the labeled and unlabeled
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Figure 2.2: Transdutive Learningdata with some prior knowledge to estimate the values of the lassi�ation funtionat working set points (unlabeled data) [99, 30℄, as depited in Figure 2.2. Thisway of learning is very lose to human learning beause we often learn things bytaking our experienes into onsideration (labeled data) simultaneously with un-known subjets (unlabeled data) to explore and speulate on them. We propose amixed-integer programming model for solving the transdution problem in Chapter4. Possible advantages of using both the labeled and unlabeled data led a group ofresearhers working on web-based text lassi�ation problem to develop an algorithmombination of the naive bayes and Expetation-Maximization (EM) algorithms[74, 67, 18℄. The two-step algorithm is outlined in [74℄ as follows:� Build an initial lassi�er by alulating lassi�er parameters from the labeleddouments only (Naive-Bayes step).� Loop while lassi�er parameters hange.{ Use the urrent lassi�er to alulate probabilistially weighted labels forthe unlabeled douments (Expetation step).{ Realulate the lassi�er parameters given the probabilistially assignedlabels (Maximization step).



25The algorithm proposed in [74℄ is good partiularly in the ase of few labeledand many unlabeled data suh as home page ategorization, UseNet newsgroupmessage lassi�ation and Reuters news data. Essentially, labeling these types ofdata is very expensive despite the fat that unlabeled data is easily available. EMsteps in this algorithm alternately generate probabilistially weighted labels for theunlabeled douments, and a more probable model with a smaller parameter variane.The key issue here is that using unlabeled data redues the parameter variane.Variane redution is due to the dependene between lassi�ation parameters andthe random variable over the unlabeled data distribution.EM based ative learning methods are also onsidered as semi-supervisedmethods [67℄. The Query-by-Committee (QBC) method of ative learning has beenimplemented in [67℄. Committee members are sampled from training data by theposterior Dirihlet distribution based on the training data word ounts. This om-mittee then approximates the entire lassi�er distribution. Traditional QBC thenlassi�es unlabeled data and omputes disagreement among the ommittee mem-bers for eah label predition. Finally for labeling requests, it douments the pointson whih members disagree most. The authors propose to measure ommittee dis-agreement for eah doument using Kullbak-Leibler (KL) divergene to the meanriterion as opposed to previously employed vote entropy in whih eah ommitteemember votes with probability mass 1=k for its winning lass.The KL divergene is an information-theoreti measure of the di�erene be-tween two distributions, apturing the number of extra bits of information requiredto send messages sampled from the �rst distribution using a ode that is optimal forthe seond. The di�erene between traditional QBC and this implementation is thatan EM sheme with unlabeled data is performed after the step of �nding the lassi-�er funtion based on ommittee members and before omputing the disagreementamong the members for eah unlabeled data point.In [18℄, the authors ombine labeled and unlabeled data through o-trainingusing a Bayesian network type of lassi�er. Co-training �rst �nds weak preditorsby using the labeled data based on eah kind of information (e.g.\researh interests"might be a weak preditor for a faulty home page). Using the unlabeled data, the



26method generates a bootstrap sample from these weak preditors in the followingstep. Finally a Bayesian network lassi�er is implemented to lassify this bootstrapsample. Authors reported some improvement ompared to fully supervised training.Another way of inorporating the unlabeled data into the learning proessis to modify the objetive funtion, whih is optimized within a learning proess.C�ataltepe and Magdon-Ismail [28℄ proposed an augmented error, whih has ompo-nents from both the labeled and unlabeled data. The authors provide an analytialsolution in the ase of linear, noisy targets and linear hypothesis funtions. Theyalso show some results for the non-linear ase.Assume a training set: f(x1; f1); :::; (xn; fn)g and the objetive of the learningproess is to hoose a hypothesis gv, among a lass of hypotheses G, minimizing thetest error over the test set of f(y1; h1); :::; (y`; h`)g. We an de�ne training error inthis ase: E0(gv) = 1n nXi=1 (gv(xi)� fi)2and test error as: E(gv) = 1̀ X̀j=1(gv(yj)� hj)2:Expanding the test error will give us:E(gv) = 1̀ X̀j=1 g2v(yj)� 2̀ X̀j=1 gv(yj)hj + 1̀ X̀j=1 h2j :Sine we an not speulate on the true labels of test set, C�ataltepe and Magdon-Ismail then modify this error funtion as follows:E(gv) � 1̀ X̀j=1 g2v(yj)� 2n nXi=1 gv(xi)fi + 1n nXi=1 f 2i (2.9)= E0(gv) + 1̀ X̀j=1 g2v(yj)� 1n nXi=1 f 2iBy introduing an augmentation parameter � between 0 and 1, a more general error



27funtion, alled the augmented error, an be de�ned as:E�(gv) = E0(gv) + �( 1̀ X̀j=1 g2v(yj)� 1n nXi=1 f 2i ): (2.10)For � = 0, the augmented error is equivalent to training error E0 and for � = 1orresponds to Equation 2.9.We summarized related literature in lustering, lassi�ation and support ve-tor mahines in this hapter. We also reported some work done in the �eld ofombining labeled and unlabeled data. We now examine the �rst semi-supervisedmethod of this researh in the next hapter. A GA based semi-supervised lusteringmethod is proposed. From both GA and the semi-supervised learning perspetives,the proposed method has many innovative features.



CHAPTER 3A Geneti Algorithm Approah for Semi-supervisedClustering3.1 IntrodutionIn this hapter, inorporating label information into an unsupervised learningapproah is studied. The goal is to group both labeled and unlabeled data intothe lusters where eah luster is as pure as possible in terms of lass distributionprovided by the labeled data. The advantage of suh an approah is that it anbe used for both indutive and transdutive inferene. Moreover, unsupervisedlearning provides apaity ontrol for lassi�ation. In addition the lusters helpalso haraterize segments of the population likely or unlikely to possess the targetharateristi represented by the label. This additional information an be usefulfor several appliations. For example, in database marketing only the most purelusters of ustomer would be inluded in a marketing ampaign and new produtsmay be designed to reah ustomers in marginal lusters. The work based on thishapter is also reported in [39, 38℄.As a base to our semi-supervised algorithm, an unsupervised lustering methodoptimized with a geneti algorithm is used by inorporating a measure of lassi�-ation auray used in deision tree algorithms, the GINI index [24℄. Clusteringalgorithms that minimize some objetive funtion applied to K-luster enters areexamined in this hapter. Eah point is assigned to the nearest luster enter byEulidean distane. The goal is to hoose the luster enters that minimize somemeasure of luster quality. Typially a luster dispersion metri is used. If the meansquare error, a measure of within luster variane, is used then the problem beomessimilar to the lassi K-means lustering [58℄. An alternative metri, the Davies-Bouldin Index (DBI) [36℄ that is a funtion of both the within luster variane andbetween luster enter distanes is also examined. By minimizing an objetive fun-tion that minimizes a linear ombination of the luster dispersion measure and theGini Index, the algorithm beomes semi-supervised. The details of the problem for-28



29mulation are given in Setion 3.2. Sine the objetive funtion is highly nonlinearand disontinuous with many loal minima, it is optimized by using the C++ basedgeneti algorithm library pakage GAlib [102℄.Geneti Algorithms (GAs) are well known for being able to deal with omplexsearh problems by implementing an evolutionary stohasti searh. Beause ofthis, GAs have been suessfully applied to a variety of hallenging optimizationproblems. The NP-hard nature of the lustering problem makes GA a naturalhoie for solving it suh as in [13, 62, 85, 70, 35℄. A ommon objetive funtion inthese implementations is to minimize the square error of the luster dispersion:E = KXk=1 Xx2Ck kx�mkk2 (3.1)where K is the number of lusters and the variable mk is the enter of luster Ck.This is indeed the objetive funtion for the K-means lustering algorithms. Thealgorithm proposed in [85℄ modi�es this objetive funtion by using the inverse ofDavies-Bouldin index de�ned in [36, 58℄ and minimizing it by using evolutionaryprogramming.GAs are also implemented in [70℄ to minimize the funtion E (3.1). Genomesare represented by n-bit long strings where n is the number of data points. Eah bitin genomes represents luster membership. Although proper rossover and mutationoperations are de�ned for this sheme, it is not a salable algorithm due to the lengthof the genomes.There are prior studies on luster analysis using geneti algorithms suh asan algorithm based on GAs is used for mahine vision (pattern reognition) in [35℄.The basi problem de�ned in [35℄ is to group objets to a �xed number of lusters.A new gene representation, Boolean Mathing Code (BMC), is de�ned in [35℄ as analternative way to Linear Code (LC) used in [70℄. The basi idea in BMC is thateah gene represents one luster with n binary bits where n is the number of objets.In this ase the total size of solution spae is 2Kn. Although the size of the solutionspae in LC is 2nlogK, BMC reahes the onvergene earlier than LC by utilizingbetter rossover and mutation operations. A single gene rossover operation was



30proposed in [35℄.Sine the proposed algorithm performs transdution using both labeled andunlabeled data in the learning task, there are some substantial di�erenes betweenthe proposed algorithm in this hapter and the algorithms proposed in [85, 70, 35℄.But the ore implementation of the GA has some similarities. Reently GA luster-ing was also implemented in the ontext of design and disovery of pharmaeutials[44℄. In Setion 3.2, the problem de�nition and the proposed algorithm are given.Details about the GA implementation are given in Setion 3.3. Experimental re-sults are given in Setion 3.4. A omparison with 3-nearest-neighbor and linearand quadrati disriminant analyses is also reported in Setion 3.4. Finally, wesummarize our �ndings in the Setion 3.5.Related approahes for ombining supervised and unsupervised learning exist.For example Learning Vetor Quantization (LVQ) [61℄ and Constrained Topologi-al Maps (CTM) [31℄ also use the approah of adapting a primarily unsupervisedmethod to perform lassi�ation. This hapter helps address the interesting, but stillopen question, of how well suh methods an exploit the information in unlabeleddata to support transdutive inferene. Moreover, nearest prototype lassi�ers arestudied in [16, 62℄. Seleting prototypes from dataset with GA is ompared withrandom seletion in [62℄.3.2 Problem De�nitionClustering, in general, is de�ned as grouping similar objets together by opti-mizing some similarity measure for eah luster suh as within group variane. Sinelustering generally works in an unsupervised fashion, it is not neessarily guaran-teed to group the same type (lass) of objets together. In this ase, supervisionneeds to be introdued to the learning sheme through some measure of luster im-purity. The basi idea is to �nd a set of lusters then minimize a linear ombinationof the luster dispersion and luster impurity measures. More spei�ally, seletK > 2 luster enters, mk (k = 1; :::; K), that minimize the following objetive



31funtion: minmk;k=1;::: ;K � � Cluster Dispersion + � � Cluster Impurity (3.2)where � > 0 and � > 0 are positive regularization parameters.If � = 0, then the result is a purely unsupervised lustering algorithm. If � = 0the result is a purely supervised algorithm that tries to minimize the luster impurity.As in the K-means algorithm, eah point is assumed to belong to the nearest lusterenter as measured by Eulidean distane. Eah non-empty luster is assigned alass label orresponding to the majority lass of points belonging to that luster.Two luster dispersion measures from the lustering literature will be examined:mean square error (see Setion 3.2.1) and Davies-Bouldin Index (see Setion 3.2.2).It is important to note that for the indution ase, luster dispersion is based on thelabeled training data. For the transdution ase, the luster dispersion is based onall available data, both labeled and unlabeled. For the luster impurity measure, ameasure of partition quality ommon in deision tree algorithms, the Gini Index, isused (see Setion 3.2.3). Sine the objetive funtion (Eq.3.2) is highly disontinuouswith many loal minima, it is optimized by using the geneti algorithm library(see Setion 3.3) GAlib. When a solution is found, it might ontain lusters withlittle or no points assigned to them. These lusters are deleted and relevant pointsare reassigned to their nearest luster enters. Pratial details of this algorithmare disussed in the omputational results setion (see Setion 3.4). The resultingalgorithm an be summarized as follows:Algorithm 3.2.1. Semi-supervised lustering algorithm� Within geneti algorithm:1. Determine luster enters2. Partition the labeled data by distane to losest luster enter.3. Find non-empty lusters, assign a label to non-empty lusters by majoritylass vote within them.4. Compute dispersion and impurity measures:



32{ Indution: Use labeled data.{ Transdution: Use labeled + unlabeled data.� Prune lusters with few members.� Reassign the points to �nal non-empty lusters.3.2.1 First Dispersion Measure: MSEThe average within luster variane is frequently used in lustering tehniquesas a measure of luster quality. Commonly known as the mean square error (MSE),this quantity is de�ned as:MSE = 1n KXk=1 Xx2Ck kx�mkk2; (3.3)where n is the number of points, K is the number of lusters, and mk is the enterof luster Ck. The K-means algorithm minimizes the MSE objetive.3.2.2 Seond Dispersion Measure:DBIThe Davies-Bouldin index is used as an alternative to MSE. DBI is determinedas follows [58℄ : Given a partition of the n points into K lusters, one �rst de�nesthe following measure of within-to-between luster spread for two lusters, Cj andCk for 1 � j; k � K and j 6= k. Rj;k = ej + ekDjk ; (3.4)where ej and ek are the average dispersion of Cj and Ck, and Djk is the Eulideandistane between Cj and Ck. If mj and mk are the enters of Cj and Ck, thenej = 1nj Xx2Cj kx�mjk2 (3.5)and Djk = kmj �mkk2, where mj is the enter of luster Cj onsisting of nj points.The term Rk for eah Ck is de�ned as



33
Rk = maxj 6=kRj;k: (3.6)Now the DBI is de�ned as: DB(K) = 1=K KXk=1 Rk (3.7)The DBI an be inorporated into any lustering algorithm to evaluate a par-tiular segmentation of data. The DBI takes into aount luster dispersion andthe distane between luster means . Well separated ompat lusters are preferred.The DBI favors small numbers of lusters. Optimizing the DBI frequently eliminateslusters by foring them to be empty.3.2.3 Impurity Measure: Gini-IndexThe Gini index has been used extensively in the literature to determine theimpurity of a ertain split in deision trees [24℄. Usually, the root and intermediatenodes are partitioned to two hildren nodes. In this ase, left and right nodes willhave di�erent Gini index values. If any split redues the impurity, the deision treeat that node is partitioned further and the deision rule whih yields the minimumimpurity is seleted. Clustering using K luster enters partitions the input spaeinto K regions. Therefore lustering an be onsidered as a K-nary partition at apartiular node in a deision tree, and the Gini index an be applied to determinethe impurity of suh a partition. In this ase, Gini Index of a ertain luster isomputed as: GiniPj = 1:0� Xi=1 (Pjinj )2 j in 1; :::; K (3.8)where  is the number of lasses and Pji is the number of points belong to ith lassin luster j. nj is the total number of points in luster j. The impurity measure of



34a partiular partitioning into K lusters is:impurity = PKj=1 TPj �GiniPjn (3.9)where TPj is the probability of a point belonging to luster j and n is the numberof points in the dataset.Preliminary experiments indiated that the Gini index is generally preferableover other impurity measures suh as the number of mislassi�ed points. If thesimple number of mislassi�ed points is used, then the mislassi�ed points maybe distributed evenly throughout all the lusters. The Gini Index favors solutionswith pure lusters even at the expense of total lassi�ation error. Other deisiontree splitting riterion suh as Information Gain ould also be used for the lusterimpurity measure [78℄.3.3 Geneti Representation and AlgorithmThe objetive funtion (Eq. 3.2) de�ned in the previous setion is disontin-uous and non-onvex. Finding an optimal solution to this problem is extremelydiÆult, so heuristi searh is desirable. Heuristi searh approahes suh as genetialgorithms (GA), evolutionary programming, simulated annealing and tabu searhhave been used extensively in the literature to optimize related problems. Genetialgorithm approah is utilized beause the objetive funtion de�ned an be readilyused as a �tness funtion in the GA. The authors in [85, 70, 35℄ used their ownustomized GAs for lustering. As opposed to developing a geneti algorithm fromsrath, a general purpose GA library, GAlib [102℄, is ustomized by utilizing theoating-point representation and Goldberg's simple GA approah [50℄. This algo-rithm uses non-overlapping populations. In eah generation, the algorithm reatesan entirely new population of individuals by seleting from the previous populationthen mating to produe the new o�spring for the new population. This proess on-tinues until stopping riteria have been met. An elitist strategy was applied whihallows the best individual to pass to the new generation.In a geneti algorithm appliation major onerns are genome representa-



35tion, initialization, seletion, rossover and mutation operators, stopping riteriaand most importantly the �tness funtion. The objetive funtion (Eq.3.2), de�nedabove, is diretly used as the �tness funtion without any saling. The genomerepresentation onsists of an array of Kp real numbers, where p is the number ofdimensions in the data and K is the number of lusters. Eah set of p numbers rep-resents one luster enter. This type of representation brings several advantages overprior disrete representation of luster membership. First, luster memberships areassigned based on Eulidean distane metri in this ase instead of assigning thembased on the values of genome. Seond, eah genome requires less searh spae thanprevious appliations for the large datasets, sine the length of the genomes dependsonly on the number of lusters (K) and the dimensionality (p) of the dataset, notthe number of data points. It is therefore possible to handle the large datasets withthis representation.Default geneti operators de�ned for GARealGenome lass in GAlib were ap-plied. A mutation with Gaussian noise is the default in this ase. Uniform rossoverwas applied as the default rossover operation. Although the uniform initializeris used by default, the population was initialized by sampling from the data. Auniform seletion rule was used for seleting mating individuals (parents).Two stopping riteria were applied . The algorithm stops when either of themis satis�ed. One of these riteria is the maximum number of generations. The otherone is the onvergene after a ertain number of onseutive generations.The geneti algorithm yields reasonable results for both indution and trans-dution problems. The experimental �ndings are summarized in the next setion.3.4 Experimental ResultsThe goals in this omputational approah are to determine if ombining su-pervised and unsupervised learning approahes tehniques ould lead to improvedgeneralization, and to investigate if performing transdutive inferene using unla-beled data for training ould lead to improvements over indutive inferene. Ex-perimental study is done with eight datasets from the UC-Irvine Mahine Learning



36Repository [68℄1. The datasets have all originally two-lass output variable exeptHousing. The output variable for this dataset was ategorized at the level of 21.5.Eah dataset was divided into three subsets after a standard normalization. Thesesubsets are alled the training, testing and working sets. Currently 40% of data is fortraining, 30% is for testing and remaining 30% is for working sets. For eah dataset,two senarios have been tested to understand the di�erene between indutive andtransdutive inferenes. For indutive inferene, the algorithm is applied to labeledtraining data and then tested on the test data. For transdutive inferene, the al-gorithm is applied to labeled training data, unlabeled working data, and unlabeledtest data, and then tested on the test data.Results from seven di�erent �tness funtions are reported. The two di�erentluster dispersion measures, MSE (Eq.3.3) and Davies-Bouldin Index (Eq.3.7), areapplied to indution in a ompletely unsupervised mode (� = 1; � = 0) and semi-supervised mode (� > 0; � > 0), and transdution in a semi-supervised mode (� >0; � > 0). We also tried the ompletely supervised ase based on only the Gini index(� = 0; � = 1). For transdution, both the luster dispersion measure and the Giniindex are based on the labeled and unlabeled data. In transdution, the Gini index(Eq.3.8) beomes: GiniPj = 1:0� Xi=1 (Pjin̂j )2 j in 1; :::; K (3.10)n̂j is equal to number of labeled and unlabeled points in luster j.The best parameter set for the problem was piked by trial and error. We usesame set of GA parameters for eah dataset. The maximum number of generationsis 500, mutation probability is 0.01, probability of rossover is 0.95, and numberof generations to onverge is 50. Eah generation onsists of 50 ompeting genes.Experiments are onduted based on 10 bootstrap samples. For brevity only theaverage testing set error results are reported here. A paired t-test was used toassess the signi�ane of di�erene of the testing set errors within a dataset. Errors1The datasets and their orresponding sizes are: Bright(14 variables, 2462 points),Sonar(60,208), Cleveland Heart(13,297), Ionosphere(34,351), Boston Housing(13,506), House Votes(16,435), Breast Caner Prognosis(30,569), and Pima Diabetes (8,769)



37with a p-value less than 0.2 were onsidered signi�ant. To insure that the weakerperformane of MSE was not based on poor hoie of parameters, (K; �; �) for eahdataset were hosen based on trials with the indutive MSE with Gini index2 Forthe DBI based results, the same values of K were used for eah dataset, and the�xed values of � = 0:01 and � = 0:1 were used for all datasets.3.4.1 First Dispersion Measure:MSEThe results using the �rst dispersion measure, MSE, are reported in Table3.1. The �rst olumn, MSE-only, indiates how the totally unsupervised approahof lustering based on only the unlabeled training data would perform. The seondolumn, GINI-only shows how the ompletely supervised approah of lusteringusing the GINI index on the labeled training data performs. The third olumn isthe proposed approah using both the MSE and GINI based on the labeled trainingdata. The forth olumn indiates how MSE+GINI performs transdutive inferenewhen all the available data is used. A bold number is the minimum error for a givendataset, an itali number indiates that the result is signi�antly di�erent from thetransdution result. The totally unsupervised MSE-only approah always performssigni�antly worse than any of the supervised methods. Surprisingly, the GINI-only omplete supervised approah was the best on four of the eight datasets. Thetransdutive MSE+GINI method based on all available data showed no onsistentimprovements over the indution approah. This is onsistent with other researherswho have reported that doing transdutive inferene using a regression estimatewhere the variane estimate was based on all the available data (both labeled andunlabeled) atually degraded results [20℄.The MSE based approahes showed poor performane. To examine why on-sider the results of the MSE-based �tness funtions on the artoon example shownin Figure 3.1. The top plot shows the indution result (using just labeled data) andthe bottom plot shows the transdution result (using both labeled and unlabeleddata) ases. Note that on the enter luster transdution does work appropriately.2The (k; �; �) values applied for eah dataset were bright (15, 0.01,0.99), sonar (7,0.1,1),heart (7,0.25,0.75), ionosphere (7, 0.01,0.99), house (7,0.1,0.9), housing (11,0.01, 0.99), progno-sis (11,0.4,0.6), and pima (11,0.01,0.99).



38The indutive MSE+GINI method does not separate the luster in the enter of the�gure, beause suh separation will result an impure luster on the right. Using theadditional unlabeled data, the transdutive MSE+GINI redues luster dispersionby splitting the enter luster (bottom of Figure 3.1). On the other hand, boththe transdutive MSE+GINI method does not ath the downward shift of the topright luster. Beause the added unlabeled points are roughly equal distane fromtwo top right luster enters, adding unlabeled data has little e�et despite the fatthat a natural gap exits between the two lusters. The MSE minimizes only theompatness of the lusters. It is neessary to �nd lusters that are both ompatand well separated. The DBI index is muh more e�etive in this regard and theomputational results are greatly improved when this luster dispersion metri isapplied.3.4.2 Seond Dispersion Measure:DBIThe DBI dispersion measure was muh more e�etive than the MSE withregards to transdution. For the artoon example, the top of the Figure 3.2 showsthe resulting partition after using DBI in �tness funtion for the indution ase.By using DBI, the method was able to ath the vertial shift within the datain transdutive inferene. The results for the DBI dispersion measure (Eq.3.7) onthe UC-Irvine Data are reported in Table 3.2. The same experimental setup andparameters as mentioned above were used exept that the maximum number ofgenerations was set to 300. The same K was used as in MSE approah, but theregularization parameters were hanged due to the di�erent magnitude of the DBI.As a purely unsupervised approah DBI-only was even worse than MSE-only atlassi�ation. The indutive DBI+GINI approah was not signi�antly di�erentfrom the GINI-Only approah. The transdutive DBI+GINI was either better or notsigni�antly worse than GINI-only approah. Transdutive DBI+GINI onsistentlyprodued the best lassi�ation results of all the seven approahes tested primarilydue to the more ompat and better separated lusters found by DBI over MSE.The evidene indiates that apaity ontrol based on both labeled and unlabeleddata is muh more e�etive using the DBI riterion than MSE.
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Figure 3.1: Indution and Transdution Results using MSE
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41Another �nding from the results is that DBI dispersion measure favors a fewernumber of non-empty lusters ompared to the MSE dispersion measure. On av-erage, using DBI dispersion measure resulted in 53.33%, 33.33%, 28.36%, 17.91%,30.84%, 33.33%, 51.11% and 50.91% fewer non-empty lusters than MSE dispersionmeasure for transdutive inferene on the UCI datasets respetively.In Table 3.3, results from some other lassi�ation tehniques are omparedwith transdutive DBI+GINI { spei�ally 3-nearest-neighbor lassi�er, linear andquadrati disriminant lassi�ers. The disriminant analysis was done using theSAS proedure DISCRIM [86℄. All results are reported on the test datasets. TheDBI-GINI is onsistently one of the better methods.3.5 ConlusionA novel method for semi-supervised learning that ombines aspets of super-vised and unsupervised learning tehniques has been introdued in this hapter.The basi idea is to take an unsupervised lustering method, label eah luster withthe lass membership, and simultaneously optimize the mislassi�ation error of theresulting lusters. The intuition behind this approah is that the unsupervised om-ponent of the objetive funtion ats as a form of regularization or apaity ontrolduring supervised learning to avoid over�tting. The objetive funtion now is alinear ombination of a measure of luster dispersion and a measure of luster impu-rity. The method an exploit any available unlabeled data during training sine theluster dispersion measure does not require lass labels. This allows the approahto be used for transdutive inferene, the proess of onstruting a lassi�er usingboth the labeled training data and the unlabeled test data. Experimental resultsalso show that using Davies-Bouldin Index for luster dispersion instead of MeanSquare Error improves transdutive inferene. This is due to the ompat and wellseparated lusters found by minimizing DBI. DBI �nds solution using muh fewerlusters than MSE with muh greater auray. The basi ideas in this hapter:inorporating lassi�ation information into an unsupervised algorithm and usingthe resulting algorithm for transdutive inferene are appliable to many types ofunsupervised learning and are promising areas of future researh.



42Table 3.1: Results Using MSE in Fitness FuntionIndution TransdutionData Set MSE-Only GINI-Only MSE+GINI MSE+GINIBright 0.06585 0.01084 0.02507 0.02263Sonar 0.43279 0.2541 0.22951 0.26066Heart 0.23636 0.21477 0.2 0.19659Iono. 0.25673 0.14423 0.12788 0.12981Housing 0.25828 0.15629 0.18874 0.16887House 0.09846 0.06692 0.06 0.06308Prognos. 0.1 0.05059 0.06235 0.05235Pima 0.32402 0.27118 0.30131 0.30393Indution TransdutionData Set DBI-Only GINI-Only DBI+GINI DBI+GINIBright 0.26897 0.01084 0.01992 0.01165Sonar 0.50656 0.2541 0.27049 0.23771Heart 0.3841 0.21477 0.21136 0.19155Iono. 0.34327 0.14423 0.12885 0.13558Housing 0.4563 0.15629 0.17086 0.15497House 0.11769 0.06692 0.07462 0.06923Prognos. 0.38059 0.05059 0.04941 0.04353Pima 0.34585 0.27118 0.28428 0.28122Table 3.2: Results Using DBI in Fitness FuntionData Set 3-NN LinDis QuadDis DBI+GINIBright 0.01247 0.02387 0.02112 0.01165Sonar 0.2098 0.38025 0.35256 0.23771Heart 0.19773 0.1745 0.22334 0.19155Iono. 0.18846 0.14624 0.1294 0.13558Housing 0.16291 0.16013 0.19946 0.15497House 0.06154 0.0414 0.06995 0.06923Prognos. 0.04235 0.04797 0.05348 0.04353Pima 0.28777 0.2313 0.26401 0.28122Table 3.3: Comparison between Transdutive DBI+GINI and 3-NN, LD,and QD



43The supervised lustering method disussed in this hapter an also be general-ized to regression problems. One ould also implement saling for variable seletion.For eah variable, a gene must be introdued to represent the saling fator. Salingan be either implemented within the same genome or using another genome forsaling fators within the GA.In the next hapter we fous on developing apaity ontrol tehniques forsupervised learning by inorporating unlabeled data into supervised learning taskbased on Support Vetor Mahines.



CHAPTER 4Optimization Approahes to Semi-Supervised Learning4.1 IntrodutionThe fous of this hapter is mathematial programming approahes to semi-supervised learning for lassi�ation tasks based on SVMs. The main idea of semi-supervised learning is to onstrut a lassi�er using both a training set of labeleddata and a working set of unlabeled data. If none of the labels are known then theproblem beomes lustering. If some of the labels are known, then the problem islassi�ation. This hapter is based on the work reported in [9, 37℄.There are many pratial domains in whih unlabeled data are abundant butlabeled data are expensive to generate and therefore relatively sare (e.g. medialdiagnosis, web searh, drug design, and database marketing). When the train-ing data onsist of relatively few labeled data points in a high-dimensional spae,something must be done to prevent the lassi�ation or regression funtion fromover�tting the training data. The key idea is that by exploiting the unlabeled datawe hope to be able to provide additional information about the problem that anbe used to improve auray on data with unknown labels (generalization) throughapaity ontrol with unlabeled data.By inluding the unlabeled data in the testing set (working set), semi-supervisedlearning an be used to perform transdutive learning instead of typial indutivelearning. In indution, the task is to onstrut a good disriminant funtion valideverywhere. This funtion is �xed and applied to any future test data (Figure 2.1).In transdution, the labeled training data and unlabeled testing data are given,then the disriminant funtion is onstruted based on all the available data. Thelearning task is to predit the labels of only those spei� test data points, not allpossible future points. This simpler task an result in theoretially better boundson the generalization error [99℄, thus reduing the amount of required labeled datafor good generalization (Figure 2.2).For semi-supervised SVM we onsider all possible labels of the test data and44



45assign the labels that produe the best SVM with maximum margin based on allthe available data, both labeled and unlabeled. For the purpose of this hapter welimit our disussion to linear SVM, but these methods an be extended to nonlin-ear support vetor mahines using the standard SVM approah of inluding kernelfuntions [99, 65℄. In Setion 4.2, we review SVMs to give foundation to developsemi-supervised methodology. In Setion 4.3 we provide a general framework forviewing the semi-supervised support vetor mahine problem. Depending on howwe penalize unlabeled data appearing in the margin the problem an be formulatedas a linear or onvex quadrati program with additional equilibrium onstraints,mixed-integer onstraints, or nononvex objetive terms. In Setion 4.4 we exam-ine pratial approahes using the linear mixed integer program (MIP) formulation�rst introdued in [9℄. By inorporating the MIP within a loal learning framework,performane is greatly enhaned. In Setion 4.5 we examine pratial algorithms fora nononvex quadrati formulation. Finally, we onlude this hapter with a briefsummary and disussion of optimization issues in semi-supervised learning.Other researhers have reported favorable results on semi-supervised methodson web-based text lassi�ation problems, for example using an EM (Expetation-Maximization) [74, 67℄, o-training in Bayesian networks [18℄, and a transdutiveversion of SVM-Light [60℄. Cataltepe and Magdon-Ismail [28℄ propose augmentederror, whih has omponents from both labeled and unlabeled data. They provide ananalytial solution in the ase of linear, noisy targets and linear hypothesis funtions.They also show some results for the non-linear ase. Theoretial results exist [27℄on the relative value of labeled and unlabeled data.4.2 Review of SVM Problem FormulationThe underlying problem of interest is to estimate a lassi�ation funtion f :Rp ! f�1g using input-output training data from two lasses(x1; y1); : : : ; (xn; yn) 2 Rp � f�1g: (4.1)



46
PSfragreplaementsClass 1

Class -1 w � x = b� 1w � x = b+ 1w � x = b
2kwk2+o

Figure 4.1: Optimal Plane Maximizes MarginThe funtion f should orretly or almost orretly lassify unseen examples (x; y),i.e. f(x) = y if (x; y) is generated from the same underlying probability distributionas the training data. In this setion we limit disussion to linear lassi�ationfuntions. If the points are linearly separable, then there exist an p-vetor w andsalar b suh that w � xi � b � 1 if yi = 1; andw � xi � b � �1 if yi = �1; i = 1; : : : ; n (4.2)or equivalently yi[w � xi � b℄ � 1; i = 1; : : : ; n: (4.3)The \optimal" separating plane, w � x = b, is the one that is furthest from thelosest points in the two lasses. Geometrially this is equivalent to maximizing theseparation margin or distane between the two parallel planes w � x = b + 1 andw � x = b� 1 (see Figure 4.1).The \margin of separation" in Eulidean distane is 2= kwk2 where kwk2 =pPpi=1w2i is the 2-norm. To maximize the margin, we minimize kwk2 =2 subjetto the onstraints (4.3). Aording to strutural risk minimization, for a �xedempirial mislassi�ation rate, larger margins should lead to better generalizationand prevent over�tting in high-dimensional attribute spaes [98℄. The lassi�er isalled a support vetor mahine beause the solution depends only on the points(alled support vetors) loated on the two supporting planes w � x = b � 1 andw � x = b+ 1.



47In general the lasses will not be linearly separable, so the generalized optimalplane problem (4.4) [32, 98℄ is used. A slak term �i is added for eah point suhthat if the point is mislassi�ed, �i � 1. The quadrati programming formulation is(SVM-QP): minw;b;� C nXi=1 �i + 12 kwk2s:t: yi[w � xi � b℄ + �i � 1�i � 0; i = 1; : : : ; n (4.4)
where C > 0 is a �xed penalty parameter. The apaity ontrol provided by themargin maximization an greatly improve generalization [100, 97℄. Typially, thefollowing dual form of (4.4) is solved in pratie:min� 12 nXi=1 nXj=1 yiyj�i�jxi � xj � nXi=1 �is:t: nXi=1�iyi = 00 � �i � C i = 1; : : : ; n (4.5)

The Robust Linear Programming approah to SVM is idential to SVM-QPexept the margin term is hanged from the 2-norm kwk2 to the 1-norm, kwk1 =Ppj=1 jwjj. The problem beomes the following robust linear program (SVM-RLP)[11, 21, 8℄: minw;b;s;� C nXi=1 �i + pXj=1sjs:t: yi[w � xi � b℄ + �i � 1�i � 0; i = 1; : : : ; n�sj <= wj <= sj; j = 1; : : : ; p: (4.6)
The RLP formulation is a useful variation of SVM with some nie harateris-tis. The 1-norm weight redution still provides apaity ontrol. The results in [64℄



48an be used to show that minimizing kwk1 orresponds to maximizing the separa-tion margin using the in�nity norm. Statistial learning theory an be extended toinorporate alternative norms. For example, an adaptive weighted eulidian normis implemented in the strutural risk minimization framework [94℄. One major ben-e�t of SVM-RLP over SVM-QP is dimensionality redution. Both SVM-RLP andSVM-QP minimize the magnitude of the weights w. But SVM-RLP fores moreof the weights to be 0 due to the properties of the 1-norm. This results in dimen-sionality redution sine variables with 0 weights an be removed from the model.Another bene�t of SVM-RLP over SVM-QP is that it an be solved using linearprogramming instead of quadrati programming.SVMs are easily generalized to nonlinear disriminants through the intro-dution of kernel funtions [99, 65℄. The basi idea is that the data are mappednonlinearly to a higher dimensional spae and a linear SVM is onstruted in thetransformed spae orresponding to a nonlinear lassi�er in the original spae. Welimit our formulation to the linear lassi�ation problem in this setion and leaveomputational studies of these approahes extended with kernels to later setions.4.3 Semi-supervised SVMOur semi-supervised support vetor mahine approah an be illustrated by asimple example. Consider the two-lass problem shown in Figure 4.2(a). Sine thelabeled training sets are linearly separable, there exists an in�nite number of possibleseparating planes that orretly lassify the two sets. Intuitively, the best linearlassi�er is the middle plane shown that separates the two sets with the greatestmargin. The margin is the sum of distanes from the losest points (the supportvetors) in eah set to the plane or equivalently the distane between the supportingplanes for eah set. The supporting planes are shown using dotted lines. StatistialLearning Theory proves that for a given mislassi�ation error, maximizing themargin of separation minimizes a bound on the expeted mislassi�ation erroron future unseen data [99℄. Maximizing the margin redues the apaity of thefuntion to �t data. Intuitively, a \fat" plane with wide margin has less apaityto �t data than a \skinny" one. In SVM, the optimal plane an be found using
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(a) Indution - train (b) Indution - test

() TransdutionFigure 4.2: Traditional SVM (a, b) versus Semi-Supervised SVM ()quadrati or linear programming depending on the metri used to measure themargin distane [99, 98, 4℄. Consider now the additional unlabeled test data shownin Figure 4.2(b). The SVM performs poorly on this partiular test set in terms oflassi�ation auray of the testing data. Note also that the resulting margin forthe ombined labeled training data and unlabeled testing data is very small. If weonstrut the SVM margin that orretly lassi�es the training data and ahievesthe widest margin based on all the data, the results found by our semi-supervisedSVM are signi�antly improved and the preferable plane is shown in Figure 4.2().Results in statistial learning theory show that, for a �xed mislassi�ation error,maximizing the margin based on all the data (train and test) an lead to betterbounds on the expeted generalization error [99℄.The basi idea of semi-supervised support vetor mahines is that we want thebest support-vetor mahine on the labeled data that has no or very few unlabeledpoints in the margin. Thus we want to penalize the support vetor mahine if



50unlabeled points fall in the margin. Spei�ally, we de�ne the semi-supervisedsupport vetor mahine problem (S3VM) as:minw;b;�;�;z C " nXi=1 �i + n+X̀j=n+1 g(w � xj � b)#+ k w ks:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; n (4.7)where C > 0 is a �xed mislassi�ation penalty parameter and g(�) is themargin penalty funtion on unlabeled data xj j = n + 1; : : : ; n+ ` .The question then is how to de�ne g. For a hard margin approah in whih nounlabeled points are allowed in the margin, the margin penalty funtion is de�nedas g1(�) := 1 for � 1 < � < 10 otherwise (4.8)If an unlabeled point falls outside the margin, it is onsidered well-lassi�ed and nopenalty is inurred.We an transform the hard margin g1 problem into a linear or quadratiprogram with an additional equilibrium onstraint. We start with either SVM for-mulation, (4.4) or (4.6), and then add two onstraints for eah point in the workingset. One onstraint alulates the mislassi�ation error as if the point were in lass1 and the other onstraint alulates the mislassi�ation error as if the point werein lass �1. We add a onstraint that fores one of the two mislassi�ation er-rors per point to be zero. This produes the following mathematial programmingproblem with equilibrium onstraints:
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minw;b;�;�;z C " nXi=1 �i#+ k w ks:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b + �j � 1 �j � 0 j = n+ 1; : : : ; n+ `�(w � xj � b) + zj � 1 zj � 0�j � zj = 0 j = n+ 1; : : : ; n+ ` (4.9)

The requirement that no unlabeled points may fall in the margin may be toostrong. A natural relaxation of the problem would be to move the equilibriumonstraint into the objetive and use it as the margin penalty funtion g. Thisresults in the following nononvex quadrati optimization problem:minw;b;�;�;z C " nXi=1 �i + n+X̀j=n+1 �j � zj#+ k w ks:t: yi(w � xi + b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b+ �j � 1 �j � 0 j = n+ 1; : : : ; n + `�(w � xj � b) + zj � 1 zj � 0 (4.10)
Close examination of this hoie of error funtion shows that it has attrativeproperties. If the unlabeled point xj falls outside or on the margin then �j or zj is 0,and there is no error assoiated with that point. If the point falls in the margin, thenfor  = w � xj � b, �j = 1�  and zj = 1 +  by onstrution of the support vetormahine. The following pieewise quadrati margin penalty funtion is produed(see Figure 4.3(a)): g2() := 1� 2 for � 1 <  < 10 otherwise: (4.11)Another natural hoie would be a margin penalty funtion that alulatesthe minimum of the two possible mislassi�ation errors. The �nal lass of a pointorresponds to the one that results in the smallest error. This is the transdutive
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(a) g2() (b) g1()Figure 4.3: Margin Penalty Funtionsidea as proposed by Vapnik [99℄. It has the advantage that if the orret labels arefound, the resulting SVM will be idential to the one produed if the points wereknown. The minimum error formulation is [9℄:minw;b;�;�;z C " nXi=1 �i + n+X̀j=n+1min(�j; zj)#+ k w ks:t: yi(w � xi + b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b+ �j � 1 �j � 0 j = n+ 1; : : : ; n + `�(w � xj � b) + zj � 1 zj � 0 (4.12)
The resulting margin penalty funtion is shown in Figure 4.3(b)g() = g1() := 1� jj for � 1 <  < 10 otherwise (4.13)For our experimental study of pratial methods for solving these problems wefoused on the minimum error formulation (4.12). But this is not to say that otherformulations are not possible or preferable. In the next two setions we explore twodi�erent approahes to pratially solving this problem.



534.4 Mixed-Integer Programming FormulationInteger programming an be used to exatly solve S3VM (4.12). The basiidea is to add a 0 or 1 deision variable, dj, for eah point xj in the working set.This variable indiates the lass of the point. If dj = 1 then the point is in lass1 and if dj = 0 then the point is in lass �1. This results in the following mixedinteger program (S3VM-MIP):minw;b;�;�;z;d C " nXi=1 �i + n+X̀j=n+1(�j + zj)#+ k w k1s:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b + �j +M(1� dj) � 1 �j � 0 j = n+ 1; : : : ; n+ `�(w � xj � b) + zj +Mdj � 1 zj � 0 dj = f0; 1g (4.14)
The onstant M > 0 is hosen suÆiently large suh that if dj = 0 then �j = 0 isfeasible for any optimal w and b. Likewise if dj = 1 then zj = 0. In this hapter,we use the 1-norm of w in the objetive.A globally optimal solution to this problem an be found using CPLEX or otherommerial mixed integer programming odes [33℄ provided omputer resoures aresuÆient for the problem size. Using the mathematial programming modelinglanguage AMPL [47℄, we were able to model S3VM easily and solve it using CPLEX.One pratial limitation of this approah is the apaity of the MIP solver used.Using CPLEX 4.0 on a Sun Ultra 1 with 700MB RAM we found it was pratial toinlude at most 50 unlabeled data points due to the CPU time limitation.4.4.1 Loal Semi-Supervised Support Vetor MahinesTo get around the pratial restrition on the number of integer variables andthus unlabeled data an be handled by our MIP solver, we utilized the S3VM-MIPas part of a loal learning algorithm. In loal learning, a point is lassi�ed based onpoints in its \neighborhood". For example, in the K-Nearest-Neighbor algorithm(K-NN), the K nearest neighbors to a point (by Eulidean distane or some othermetri) are found and then the point is assigned the majority lass of the K nearestneighbors. Loal learning methods are often alled memory-based methods, beause



54training examples are kept in \memory" and used to lassify new points. Sine theloal models have fewer training examples, it takes muh less omputational timeto optimize eah loal S3VM than to train one global one at the expense of manyloal models. Previous empirial studies have shown that the generalization abilityof loal methods often exeeds that of global ones sine the loal models inludeonly the points whih are related to the query point (interested unlabeled data) ina given learning task. Many variations exist for both seleting the neighborhoodsand determining the output lass based on the neighbor. For example, DisriminantAdaptive Nearest Neighbor [54℄ uses loal disriminant analysis to estimate the lasswithin K-NN lassi�ation. Lawrene et al. [63℄ use loal neural network modelsfor funtion approximation. See [1℄ for a survey of approahes.4.4.2 Loal S3VM and Experimental ResultsLoal S3VM is nothing but an appliation of S3VM in a loal neighborhoodof eah unlabeled point as determined by the K-NN algorithm using Eulideandistane. This neighborhood inludes both labeled and unlabeled examples. Inorder to have enough labeled examples in eah neighborhood, we arbitrarily pik Kas 10% of all available data points. Further study is needed on how to best selet theneighborhood of a point. We an summarize the method (Loal-S3VM) to lassifya given unlabeled point in the following steps:1. Find K-NN for a given unlabeled point.2. If all the labeled points in the neighborhood are in one lass, then label theunlabeled point as in that lass and end. Otherwise ontinue.3. Solve the S3VM-MIP (4.14) in the neighborhood.4. Label the point aording to the result of S3VM .There are many advantages to using Loal S3VM over using a single globalS3VM. In transdution for any data, we need to onstrut a new model. So thefat that loal S3VM must ompute a new model for eah point is also true for anytransdutive algorithm. Although there are as many models as unlabeled points



55Table 4.1: Dataset Summary StatistisData Set Dim Points Test-sizeBright 14 2462 50*Caner 9 699 70Diagnosti 30 569 57Dim 14 4192 50*Heart 13 297 30Housing 13 506 51Ionosphere 34 351 35Musk 166 476 48Sonar 60 208 21Pima 8 769 50*to solve in Loal S3VM , the overall omputational time of the algorithm inludingtime to �nd the loal neighborhood is generally less than the global S3VM algorithm.This is beause we have fewer unlabeled points in eah loal model whih meanswe have fewer binary variables in eah model. Having fewer binary variables resultsin less running time for eah loal model. Another advantage is that the overalllassi�ation funtion by Loal S3VM is nonlinear (pieewise linear to be exat)when a linear S3VM is used loally.Determining nearest neighbors of a point an beome problemati for largedatasets. One must onsider an appropriate metri and method to �nd K-NN.Sine we use datasets whih have relatively small dimensions, we use Eulideandistane ombined with a partial sort algorithm [71℄ to �nd the loal neighborhood.As mentioned in the outlines of the algorithm, for eah unlabeled point, a relateddata �le is reated and the S3VM model is solved using AMPL. Then the output ofAMPL is analyzed to �nd the label of the point.Our omputational study of S3VM onsisted of 10 trials using the ten real-world data sets desribed in Table 4.1 (eight from [68℄ and the bright and dimgalaxy sets from [75℄) 3. The basi properties of the datasets are summarized inTable 4.1. Eah dataset is sampled randomly 10 times and eah working set (testset) is omposed of 10% of the data exept the Bright, Dim, and Pima datasets in3The ontinuous response variable in Housing dataset was ategorized at 21.5



56Table 4.2: Average Error Results for Indutive and Transdutive SVMMethodsData Set SVM-RLP S3VM Loal SVM Loal S3VM 3-NNBright 0.02 0.018 0.008 0.006 0.028Caner 0.036 0.034 0.06 0.059 0.034Diagnosti 0.035 0.033 0.039 0.039 0.039Dim 0.064 0.054 0.042 0.044 0.074Heart 0.173 0.16 0.257 0.253 0.17Housing 0.155 0.151 0.118 0.124 0.177Ionosphere 0.109 0.106 0.117 0.109 0.129Musk 0.173 0.173 0.092 0.085 0.208Sonar 0.281 0.219 0.181 0.143 0.171Pima 0.22 0.222 0.22 0.218 0.264whih the size of the working set is set to 50 points and rest of the data are usedas the training set. We use the following formula to pik the penalty parameter:C = (1��)�(n+`) with � = 0:001, n is the size of the training set, and ` is the size of theworking set. The average working set errors are reported in Table 4.2. The bestresult from di�erent models is underlined for eah dataset.Columns two and three of Table 4.2 provide a omparison of the indutivelinear 1-norm support vetor mahine (SVM-RLP 4.6) with the transdutive linear1-norm SVM optimized used mixed integer programming (S3VM-MIP 4.14). Onall ten datasets, the transdutive S3VM-MIP results are either slightly better ornot signi�antly di�erent than the indutive results found using SVM-RLP. Notethat all parameters of the formulations are idential; the only di�erene betweenthe two formulations is the use of unlabeled data for the transdutive ase. For thisformulation, unlabeled data seems to help and never hurt generalization.Columns 4 and 5 of Table 4.2 ompare an indutive version of Loal SVM andthe transdutive version of Loal S3VM . In our study, the neighborhoods of pointsused by both Loal SVM and Loal S3VM are idential. Thus for eah testingset point the optimization problem solved by loal S3VM is idential to the onesolved by loal SVM one the terms involving the unlabeled data are removed. Thiswas done to ensure that the introdution of unlabeled data was the only hange



57in the experiment. But in fat, it means the unlabeled data are being used todetermine the e�etive size of the neighborhood for Loal SVM whih in itself is aform of transdution. Column 6 of Table 4.2 gives results for the 3-nearest-neighboralgorithm. This was done to examine improvements that our by simply swithingto a loal algorithm. Loal S3VM outperformed or did as well as Loal SVM oneight of the ten datasets, one again supporting the transdutive hypothesis. Theimprovements annot be simply attributed to a loal learning strategy sine 3-NNdid worse than both Loal SVM and S3VM on nine of ten datasets.Overall, Loal S3VM was onsistently the best or almost the best in our ex-periments. Either S3VM or the Loal S3VM obtained the best results on most ofthe datasets exept Dim and Housing datasets. The results indiate that using thelabeled and unlabeled points in a transdution model an improve auray. Lo-al S3VM resulted in better auray than S3VM on six datasets. One noteworthypoint is that in some ases (Sonar, Musk, Housing, Bright) Loal S3VM improvedauray notably. On Caner, Diagnosti, Heart, and Ionosphere the fat thatS3VM performed best indiates that if the neighborhood of Loal S3VM is inreased,Loal S3VM ould perform better. The best method of hoosing neighborhoods forloal methods is still very muh an open question. The proposed algorithm in thissetion takes into onsideration only one unlabeled point at a given time. Althoughthere might be many unlabeled points in a given neighborhood, the algorithm re-turns the results only on the test point of interest. The results for other points arebasially disarded. One extension would be keeping these results for a �nal voteat the end of the algorithm. In this ase, we an assign a probability of lass mem-bership for a ertain point. The results from one point an also be used as startingpoints to improve the solution time of Loal S3VM on nearby points.4.5 Nononvex Quadrati ApproahAn alternative approah to solving the minimum error S3VM problem (4.12)is to onvert it into a nononvex quadrati program. We adapt the approah usedpreviously to handle disjuntiveness of lassi�ation labels within the bilinear sepa-rability [12℄ and global tree optimization problems [17, 3, 12℄. One again a deision



58variable dj is introdued for eah point suh that at optimality if dj = 1 then thepredited lass of xj is 1 and if dj = 0 then the xj is predited as lass -1. Theresulting problem is (S3VM-QP)minw;b;�;�;z;d C " nXi=1 �i + n+X̀j=n+1(dj�j + (1� dj)zj)# + 12 k w k2s:t: yi(w � xi � b) + �i � 1 �i � 0 i = 1; : : : ; nw � xj � b+ �j � 1 �j � 0 j = n+ 1; : : : ; n+ `�(w � xj � b) + zj � 1 zj � 0 0 � dj � 1 (4.15)
An intuitively simple approah is to adapt a blok oordinate desent algorithm(e.g. [14℄) whih alternates between �xing d and estimating the SVM weights w; band other dependent variables, and optimizing d with the other SVM variables �xed.In [17℄, it was shown for a lass of problems that inludes S3VM-QP (4.15), using2-norm k w k2 suh an approah will onverge in a �nite number of iterations toa solution satisfying the minimum prinipal neessary optimality onditions. Nolinesearh is required. The proof in [17℄ does require eah subproblem be solvedto optimality, but this ondition an be relaxed to require only a strit derease inthe objetive funtion. On the global tree optimization problem [3, 17℄ , the blokoordinate desent algorithm was found to be very prone to loal minima so a tabusearh method was used. When applied to transdution, we also found this simplealgorithm to be very prone to loal minima and thus do not report the results here.To improve the results, we developed a heuristi variation of the blok oordinatedesent algorithm. We introdue this algorithm in the following setion.4.5.1 A Desent Algorithm for Transdutive SVMThe essential idea behind our heuristi approah is that we start by heavilypenalizing solutions with points falling within the margin and then relax this re-quirement in order to �nd solutions with wider margin. Just as in the basi blokoordinate desent method, we �rst estimate the labels (dj; j = n + 1; : : : ; n + `)based on our urrent estimate of the SVM, and then solve S3VM-QP with d �xed.



59Note that in pratie and for easy introdution of nonlinearity via kernels we solvethe dual of Problem (4.15) whih for �xed d redues to the usual dual SVM problem(Eq. 4.5) tailored for transdution :min� 12 n+X̀i=1 n+X̀j=1 yiyj�i�jK(xi; xj)� n+X̀i=1 �is:t: n+X̀i=1�iyi = 00 � �i � C i = 1; : : : ; n+ ` (4.16)
where yj = 2 � (dj � 12) for j = n + 1; : : : ; n + `, K(�; �) is a kernel funtion. Thisproess is repeated until a loal minimum is reahed. Then the weight on themislassi�ation error C is dereased allowing wider margins. In order to esapefrom loal minima, the algorithm swithes the labels of unlabeled data lose tothe separating hyperplane, if neessary. For this purpose, we hek the onseutivesolutions to trak loal minima. If 10 onseutive solutions are the same we assignthe opposite labels to the points satisfying jw � xi+1 � bj < S. Oasionally a loalminima is found with all points lassi�ed in one lass (w = 0). In this ase, thealgorithm restarts using the same initial onditions exept for a redued marginpenalty parameter C for the unlabeled data. We empirially piked C = �100�(1��) ,beause it performed well in most ases. To ensure a good starting solution, theinitial label assignments are made based on the losest lass enter for eah unlabeledpoint. The resulting algorithm an be summarized as follows:Algorithm 4.5.1. S3VM-IQP� Find lass enters from training points� Assign labels d0 to working set aording to the losest lass enter� Initialization: i = 0, � = 0:9, C = �100�(1��) , ounter = 0, S = 0:2:� While i � max iteration



601. Fix di and solve Problem 4.15 (or its dual (4.16)) to �nd (wi+1; bi+1; �i+1,�i+1; zi+1).2. Fix (wi+1; bi+1; �i+1; �i+1; zi+1) and solve Problem 4.15 for di+1:3. Chek onvergene riteria{ If solution is same as the previous onethen ounter=ounter +1 and � = � � 0:9else if there exists no point within marginthen stopelse let ounter = 0{ if ounter > 10 then let ounter = 0 and assign the opposite labelsto the points satisfying jwi+1 � x� bi+1j < S{ if solution is all-in-one-lass then reassign initial onditionsexept i and let �� = 0:94. i = i+ 1As a benhmark for transdutive SVM, we report results from SVM-Lightproposed by Joahims in [60, 59℄. Transdutive SVM-Light also an be viewed asa blok oordinate desent algorithm that alternates between estimating the lasslabels and optimizing the SVM based on those labels. Transdutive SVM-Lighthas an inner and an outer loop. The outer loop adjusts the penalty parameters onmislassi�ation errors. Di�erent errors are used for the unlabeled data aordingto their estimated lass labels. After initial indutive iteration, the algorithm startswith low penalty terms for unlabeled data. Two penalty terms (C��; C�+) are usedin transdutive SVM-Light, eah for lassifying an unlabeled point as a lass -1 ora lass 1 objet respetively. Then it uniformly inreases the inuene of unlabeleddata up to a user-de�ned penalty level. During this phase, the algorithm tunesthese penalty terms in a way to satisfy a user-de�ned bias in data. The innerloop optimizes the SVM for the given penalties. The inner loop swithes the labelsof two given points, if suh an ation redues the overall error. Like S3VM-IQP,SVM-Light alternates the labels to avoid loal minima. The primary di�ereneis that SVM-Light hanges the signs of at most two points at a time. Another



61Table 4.3: Average Error Results for Transdutive and Indutive Meth-ods Data Set SVM-QP SVM-Light S3VM-IQPHeart 0.16 0.163 0.1966Housing 0.1804 0.1608 0.1647Ionosphere 0.0857 0.1572 0.0943Sonar 0.1762 0.2524 0.1572di�erene is SVM-Light uses di�erent margin penalty parameters for lass 1 andlass -1 objets. In addition, unlike S3VM-QP, it starts with lower values for marginpenalty parameters. Details of SVM-Light and suessful results on large datasetsan be found in [60℄. We use the default parameter options in our experiments withSVM-Light.4.5.2 S3VM-IQP ResultsIn this setion we ompare S3VM-IQP with SVM-QP (Eq. 4.5) and trans-dutive SVM-Light. We use the same datasets as in the previous setion. Dueto the long omputational times for S3VM-IQP and transdutive SVM-Light, welimit our experiments to only the Heart, Housing, Ionosphere, and Sonar datasets.Linear kernel funtions are used for all methods used in this setion. The resultsgiven in Table 4.3 show that using unlabeled data in the ase of datasets Heart andIonosphere a�ets generalization ability slightly but the di�erene between the besttransdutive result and SVM-QP (Eq. 4.5) is not statistially signi�ant. In theother two ases (Housing and Sonar), the best transdutive method outperformsSVM-QP signi�antly. On two datasets S3VM-IQP performs signi�antly betterthan transdutive SVM-Light and in one ase (Housing) the di�erene between twomethods is not statistially signi�ant.As indiated above, the results from both S3VM-IQP and SVM-Light are in-onlusive. Both algorithms are muh more expensive than their indutive versions.From the results on the mixed integer programming approahes we know that trans-dution an improve learning. We speulate that the reason that these improvementswere not found using S3VM-IQP and SVM-Light is that the optimization problem



62is very diÆult and that the methods are failing to �nd the global minima. Weknow from the prior experiments that there is very little room for improvement onthese spei� learning tasks. Very few loal minima will lead to better generaliza-tion. S3VM-MIP and its loal version are �nding globally optimal solutions thatare better. From the results on SVM-Light reported in [60℄ we know that on largerproblems in text ategorization, transdutive inferene using SVM-Light did leadto signi�ant improvements. So on di�erent learning tasks S3VM-IQP may performbetter as well. We speulate that on problems where there are many loal minimathat improve generalization, it is not as essential that the global minimum be found.Further studies are needed to identify when methods that �nd good but not glob-ally optimial solutions are suÆient. Note that nonlinear kernels also might resultin better generalization.4.6 ConlusionWe examined mathematial models for semi-supervised support vetor ma-hines (S3VM). We proposed a general S3VM model that minimizes both the mis-lassi�ation error and the funtion apaity based on all the available data. Threedi�erent funtions for penalizing unlabeled points falling in the margin were dis-ussed. Our omputational investigation foused on the minimum error formulationfor the transdutive inferene problem. We onverted this problem to a mixed-integer program that an be exatly solved using ommerial integer programmingpakages. By using the MIP formulation with a loal learning algorithm, a powerfulsalable transdutive inferene method was reated. Our omputational experimentsfound that the loal learning method was the most e�etive overall. Further studiesare needed to determine how to best selet neighborhoods and to hoose the param-eters within the loal S3VM-MIP. In addition, very eÆient omputational methodsfor the loal S3VM-MIP are needed. One possibility is to use the estimated labelsand models for one point as a starting point for other points. We also examineda nonovex quadrati optimization approah to S3VM. Our omputational studieswere less onlusive using this approah. The best optimization approah for solvingthis problem is still very muh an open question.



63Inreasingly ompetitive markets, hallenging sienti� problems, and omplexdeision proesses require to use all available information on hand to enhane theoutput of urrent models. In the last two hapters we proposed methods to introduenew approahes for apaity ontrol by solving semi-supervised learning problems.These methods were implemented in the feature spae. We will shift our fous inthe next hapter to propose apaity ontrol tehniques in the label spae.We proposed using unlabeled data as an extra information for urrent mahinelearning methods. One an also use the output of several models to improve thequality of the �nal output. Boosting [87℄ is a method for ombining the output ofthe several mahine learning models. In the next hapter, we use olumn generationtehnique from mathematial programming to boost deision stumps and deisiontrees.



CHAPTER 5A Column Generation Algorithm for Boosting5.1 IntrodutionReent papers [87℄ have shown that boosting, aring, and related ensemblemethods (hereafter summarized as boosting) an be viewed as margin maximizationin label spae. By hanging the ost funtion, di�erent boosting methods suh asAdaBoost an be viewed as gradient desent to minimize this ost funtion [66℄.Some authors have noted the possibility of hoosing ost funtions that an beformulated as linear programs (LP) but then dismiss the approah as intratableusing standard LP algorithms [51, 81, 23℄. In this hapter, we show that LP boostingis omputationally feasible using a lassi olumn generation simplex algorithm [72℄.This method performs tratable boosting using any ost funtion expressible as anLP. We spei�ally examine the variations of the 1-norm soft margin ost funtionused for support vetor mahines [82, 4, 65℄ (See SVM-RLP problem 4.6 in Chapter4). One advantage of these approahes is that immediately the method of analysisfor support vetor mahine problems beomes appliable to the boosting problem.In Setion 5.2, we summarize boosting briey and explain the motivation behindthis study. We also review theoretial �ndings indiated in [10, 40℄. In Setion5.3, we disuss the soft margin LP formulation adapted to boosting. By adoptinglinear programming, we immediately have the tools of mathematial programmingat our disposal. By use of duality theory and optimality onditions, we an gaininsight into how LP boosting works mathematially. In Setion 5.4, we examinehow olumn generation approahes for solving large sale LPs an be adapted toboosting.For lassi�ation, we examine both standard and on�dene-rated boosting.Standard boosting algorithms use weak learners (base learners, hypotheses) thatare lassi�ers (suh as deision trees, neural networks et.), that is, whose outputsare in the set f�1;+1g. Shapire and Singer [88℄ have onsidered boosting weak64



65learners whose outputs reeted not only a lassi�ation but also an assoiatedon�dene enoded by a value in the range [�1;+1℄. They demonstrate that so-alled on�dene-rated boosting an speed onvergene of the omposite lassi�er,though the auray in the long term was not found to be signi�antly a�eted.In Setion 5.5, we disuss the minor modi�ations needed for LPBoost to performon�dene-rated boosting.The methods we develop an be readily extended to any boosting problemformulated as an LP. We demonstrate this by adapting the approah to regressionin Setion 5.6. Computational results and pratial issues for implementation of themethod are reported in Setion 5.7.5.2 Motivation for Soft Margin BoostingAs soial beings, humans make deisions by asking friends their opinions. Insome ases, we might simply make a deision/judgement based on the majorityopinion. The same phenomenon is valid for demorati, ivilized soieties in general.Publi deisions are made by the majority vote. As ordinary itizens, our rights tovote do not require sophistiated knowledge, advaned eduation et.. Conventionalwisdom suggests that even though we are not in the position to make publi deisionsas individuals, sine it is representative of the onerned itizens, the majority votewill be the right hoie. Surprisingly, voting methods also perform well in supervisedlearning ases. In voting methods, the idea is to onstrut several learning modelsand lassify objets based on the majority vote of the outputs from these models.There have been many suessful variations of voting methods. The mostfamous one, the AdaBoost algorithm [87℄, is given below. r is the maximum numberof boosting rounds given to the algorithm. aj j = 1; : : : ; r is the weight of the eahweak learner (lassi�er), hj, from the the lass of funtions, H. �j is the weightederror rate in eah boosting iteration.



66Algorithm 5.2.1 (AdaBoost).Given as input training set: S with n instanes x and labels yr  max boosting roundsa 0 All oeÆients are 0H(S; u) Weak learneru ( 1n ; : : : ; 1n) Example weightsfor j = 1..rFind weak learner hj  H(S; u)�j  Pi:hj(xi)6=yi ui weighted errorif �j > 1=2; r j � 1 breakaj  log �j1��j hypothesis weightfor eah uiif hj(xi) 6= yi; ui  ui=(2�j)else, ui  ui=(2(1� �j))endendreturn r; f =Prj=1 ajhjThe basi rationale behind AdaBoost is to inrease the weight values of themislassi�ed objets and to derease the weight values of those lassi�ed orretlyin eah iteration. Thus, the next weak learner attempts to perform well on themislassi�ed objets. Although, this blak-box method might look to be prone tothe over�tting problem in eah iteration, strong experimental results have shownthat AdaBoost an generalize very well even when the number of boosting roundsis inreased. Breiman tried to explain this situation in the ontext of Bias-Varianetrade-o� [22℄. It was shown [87℄ that better generalization was due to the maxi-mization of the margin distribution in label spae (yf(x)).Margin maximization in label spae enables the determination of the general-ization error boundaries of boosting approah by adapting similar boundaries fromsupport vetor mahines. Suh error boundaries, dependent on the funtion lass,the size of the smallest over for suh funtion lass, and the size of the training set



67are given in [10, 40℄ (espeially Theorem 2.2 of [40℄). We give this theorem withoutproof.Theorem 5.2.1. Consider thresholding a real-valued funtion spae F on the do-main X. Fix  2 R+ and hoose G � F� L(X). For any probability distribution Don X � f�1; 1g, with probability 1 � Æ over n random examples S, any hypothesisf 2 F for whih (f; gf) 2 G has generalization error no more thanerrD(f) � "(n;F; Æ; ) = 2n �logN(G; 2n; 2) + log 2Æ� ,where N(�) is the overing number and provided n > 2=", and there is no disreteprobability on mislassi�ed training points.We are now in a position to apply these results to our funtion lass whihwill be in the form desribed above, F = o(H) = �Ph2H ahh : ah � 0	 ; where wehave left open for the time being what the lass H of weak learners might ontain.The sets G of Theorem 5.2.1 will be hosen as follows:GB = ( Xh2H ahh; g! :Xh2H ah + kgk1 � B, ah � 0) :Hene, the ondition that a funtion f =Ph2H ahh satis�es the onditions of The-orem 5.2.1 for G = GB is simplyPh2H ah + 1�Pni=1 � ((xi; yi) ; f; )=Ph2H ah + 1�Pni=1 �i � B: (5.1)Note that this will be the quantity that we will minimize through the boostingiterations desribed in later setions, where we will use the parameter C in plaeof 1=� and the margin  will be set to 1. Based on results from [40℄, we seethat optimizing B diretly optimizes the relevant overing number bound and henethe generalization bound given in Theorem 5.2.1 with G = GB. Note that in theases onsidered, jGj is just the growth funtion, BH(m), of the lass, H of weaklearners. The entral fous of this hapter is to optimize these error boundaries usinga olumn generation tehnique from mathematial programming. In the following



68setions spei� formulations based on linear programming are introdued.5.3 Boosting LP for Classi�ationFrom the theoretial results shown in [10, 40℄, we an see that a soft marginost funtion should be valuable for boosting lassi�ation funtions. One againusing the tehniques used in support vetor mahines, we an formulate this problemas a linear program. The upper bound on generalization error de�ned in [40℄ an beoptimized diretly using an LP. The LP is formulated as if all possible labelings of thetraining data by the weak learners were known. The LP minimizes the 1-norm softmargin ost funtion used in support vetor mahines with the added restritionsthat all the weights are positive and the threshold is assumed to be zero. This LPand variants an be pratially solved using a olumn generation approah. Weaklearners are generated as needed to produe the optimal support vetor mahinebased on the output of the all weak learners. In essene the base learner beomean `orale' that generates the neessary olumns. The dual variables of the linearprogram provide the mislassi�ation osts needed by the learning mahine. Theolumn generation proedure searhes for the best possible mislassi�ation osts indual spae. Only at optimality is the atual ensemble of weak learners onstruted.5.3.1 LP FormulationLet the matrixH be a n by r matrix of all the possible labelings of the trainingdata using funtions from H. Spei�ally Hij = hj(xi) is the label (1 or � 1) givenby weak learner hj 2 H on the training point xi. Eah olumn H:j of the matrix Honstitutes the output of weak learner hj j = 1; : : : ; r on the training data, whileeah rowHi gives the outputs of all the weak learners on the example xi i = 1; : : : ; n.There may be up to 2n distint weak learners.The following linear program an be used to minimize upper bound on gener-



69alization error (B) given in Eq.5.1:mina;� Pri=1 ai + CPni=1 �is:t: yiHia+ �i � 1; �i � 0; i = 1; : : : ; naj � 0; i = 1; : : : ; r (5.2)where C > 0 is the tradeo� parameter between mislassi�ation error and marginmaximization. The dual of LP (5.2) ismaxu Pni=1 uis:t: Pni=1 uiyiHij � 1; j = 1; : : : ; r0 � ui � C; i = 1; : : : ; n (5.3)Alternative soft margin LP formulations exist, suh as this one for the �-LP Boost-ing4. [81℄: maxa;�;� ��DPni=1 �is:t: yiHia+ �i � �; i = 1; : : : ; nPri=1 ai = 1; �i � 0; i = 1; : : : ; naj � 0; j = 1; : : : ; r (5.4)
The dual of this LP (5.4) is:minu;� �s:t: Pni=1 uiyiHij � �; j = 1; : : : ; rPni=1 ui = 1; 0 � ui � D; i = 1; : : : ; n (5.5)These LP formulations are exatly equivalent given the appropriate hoie ofthe parameters C and D. Proofs of this fat an be found in [82, 10℄ so we only statethe theorem here.Theorem 5.3.1 (LP Formulation Equivalene). If LP (5.4) with parameter Dhas a primal solution (�a; �� > 0; ��) and dual solution (�u; ��), then (â = �a�� ; �̂ = ����)4We remove the onstraint � � 0 sine � > 0 at optimality under the omplementation assump-tion.



70and (û = �û� ) are the primal and dual solutions of LP (5.2) with parameter C = D�� .Similarly, if LP 5.2 with parameter C has primal solution (â 6= 0; �̂) and dual solution(û 6= 0), then (�� = 1Pri=1 âi ; �a = â��; �� = �̂��) and ( �� = 1Pni=1 ûi ; �u = û��) are the primaland dual solutions of LP (5.4) with parameter D = C�̂.Pratially we found �-LP (5.4) with D = 1n� ; � 2 (0; 1) preferable beause ofthe interpretability of the parameter. A more extensive disussion and developmentof these harateristis for SVM lassi�ation an be found in [82℄. To maintaindual feasibility, the parameter � must maintain 1n <= D <= 1. By piking �appropriately we an fore the minimum number of support vetors. We know thatthe number of support vetors will be the number of points mislassi�ed plus thepoints on the margin, and this was used as a heuristi for hoie of �. The readershould onsult [81, 82℄ for a more in-depth analysis of this family of ost funtions.5.3.2 Properties of LP formulationWe now examine the harateristis of LP (5.4) and its optimality onditions togain insight into the properties of LP Boosting. This will be useful in understandingboth the e�ets of the hoie of parameters in the model and the performane of theeventual algorithm. The optimality onditions [72℄ of LP (5.4) are primal feasibility:yiHia+ �i � �; i = 1; : : : ; nPri=1 ai = 1; �i � 0; i = 1; : : : ; naj � 0; i = 1; : : : ; r (5.6)dual feasibility: Pni=1 uiyiHij � �; j = 1; : : : ; rPni=1 ui = 1; 0 � ui � D; i = 1; : : : ; n (5.7)and omplementarity here stated as equality of the primal and dual objetives:��D nXi=1 �i = � (5.8)



71Complementarity an be expressed using many equivalent formulations. For exam-ple, from the omplementarity property, the following equations hold:ui(yiHia+ �i � �) = 0; i = 1; : : : ; naj(Pni=1 uiyiHij � �) = 0; j = 1; : : : ; r (5.9)As in SVM, the optimality onditions tell us many things. First we an har-aterize the set of base learners that are positively weighted in the optimal ensemble.Reall that the primal variables ai multiply eah base learner. The dual LP assignsmislassi�ation osts ui to eah point suh that the ui sum to 1. The dual onstraintPni=1 uiyiHij � � \sores" eah weak learner h:j. The sore is the weighted sum ofthe orretly lassi�ed points minus the weighted sum of the inorretly lassi�edpoints. The weak learners with lower sores have greater weighted mislassi�ationosts. The formulation is pessimisti in some sense. The set of best weak learners fora given u will all have a sore of �. The dual objetive minimizes � so the optimalmislassi�ation ost u will be the most pessimisti one, i.e., it minimizes the maxi-mum sore over all the weak learners. From the omplementary slakness ondition,aj(Pni=1 uiyiHij � �) = 0; j = 1; : : : ; r; only the weak learners with sores equal to� an have positive weights aj in the primal spae. So the resulting ensemble willbe a linear ombination of the weak learners that perform best under the most pes-simisti hoie of mislassi�ation osts. This interpretation losely orresponds tothe game strategy approah of [23℄ (whih is also a LP boosting formulation solvableby LPBoost.) A notable di�erene is that LP (5.5) has an additional upper boundon the mislassi�ation osts u, 0 � ui � D; i = 1; : : : ; n, that is produed by theintrodution of the soft margin in the primal.From SVM researh, we know that both the primal and dual solutions will besparse and the degree of sparsity will be greatly inuened by the hoie of parameterD = 1�n . The size of the dual feasible region depends on our hoie of �. If � is toolarge, foring D small, then the dual problem is infeasible. For large but still feasible� (D very small but still feasible), the problem degrades to something very lose tothe equal-ost ase, ui = 1=n. All the ui are fored to be nonzero. Pratially, thismeans that as � inreases, the optimal solution is frequently a single weak learner



72that is best assuming equal osts. As � dereases (D grows), the mislassi�ationosts, ui, will inrease for hard-to-lassify points or points on the margin in the labelspae and will go to 0 for points that are easy to lassify. Thus the mislassi�ationosts u beome sparser. If � is too small (and D too large) then the meaninglessnull solution, a = 0, with all points lassi�ed as one lass, beomes optimal.For a good hoie of �, a sparse solution for the primal ensemble weights awill be optimal. This implies that few weak learners will be used. Also a sparsedual u will be optimal. This means that the solution will be dependent only on asmaller subset of data (the support vetors.) Data with ui = 0 are well-lassi�edwith suÆient margin, so the performane on these data is not ritial. From LPsensitivity analysis, we know that the ui are exatly the sensitivity of the optimalsolution to small perturbations in the margin. In some sense the sparseness of u isgood beause the weak learners an be onstruted using only smaller subsets of thedata. But as we will see in Setion 5.7, this sparseness of the mislassi�ation ostsan lead to problems when pratially implementing algorithms.5.4 LPBoost AlgorithmsWe now examine pratial algorithms for solving the LP (5.4). Sine thematrix H has a very large number of olumns, prior authors have dismissed theidea of solving LP formulations for boosting as being intratable using standardLP tehniques. But olumn generation tehniques for solving suh LPs have existedsine the 1950s and an be found in LP text books; see for example [72, Setion 7.4℄.Column generation is frequently used in large-sale integer and linear programmingalgorithms so ommerial odes suh as CPLEX have been optimized to performolumn generation very eÆiently [33℄. The simplex method does not require thatthe matrix H be expliitly available. At eah iteration, only a subset of the olumnsis used to determine the urrent solution (alled a basi feasible solution). Thesimplex method needs some means for determining if the urrent solution is optimal,and if it is not, some means for generating some olumn that violates the optimalityonditions. The tasks of veri�ation of optimality and generating a olumn anbe performed by the learning algorithm. A simplex-based boosting method will



73alternate between solving an LP for a redued matrix Ĥ orresponding to the weaklearners generated so far and using the weak learning algorithm to generate thebest-soring weak learner based on the dual mislassi�ation ost provided by theLP. This will ontinue until a well-de�ned exat or approximate stopping riterionis reahed.The idea of olumn generation (CG) is to restrit the primal problem (5.2)by onsidering only a subset of all the possible labelings based on the weak learn-ers generated so far; i.e., only a subset Ĥ of the olumns of H is used. The LPsolved using Ĥ is typially referred to as the restrited master problem. Solvingthe restrited primal LP orresponds to solving a relaxation of the dual LP. Theonstraints for weak learners that have not been generated yet are missing. Oneextreme ase is when no weak learners are onsidered. In this ase the optimal dualsolution is ûi = 1n (with appropriate hoie of D). This will provide the initializationof the algorithm.If we onsider the unused olumns to have âi = 0, then â is feasible for theoriginal primal LP. If (û; �̂) is feasible for the original dual problem then we aredone sine we have primal and dual feasibility with equal objetives. If â is notoptimal then (û; �̂) is infeasible for the dual LP with full matrix H. Spei�ally, theonstraintPni=1 ûiyiHij � �̂ is violated for at least one weak learner. Or equivalently,Pni=1 ûiyiHij > �̂ for some j. Of ourse we do not want to a priori generate allolumns of H (H:j), so we use our weak learner as an orale that either produesH:j; Pni=1 ûiyiHij > �̂ for some j; or a guarantee that no suh H:j exists. To speedonvergene we would like to �nd the one with maximum deviation, that is, theweak learning algorithm H(S; u) must deliver a funtion ĥ satisfyingnXi=1 yiĥ(xi)ûi = maxh2H nXi=1 ûiyih(xi) (5.10)Thus ûi beomes the new mislassi�ation ost, for example i, that is given to theweak learning mahine to guide the hoie of the next weak learner. One of the bigpayo�s of the approah is that we have a stopping riterion. If there is no weaklearner h for whihPni=1 ûiyih(xi) > �̂; then the urrent ombined hypothesis is the



74optimal solution over all linear ombinations of weak learners.We an also gauge the ost of early stopping sine if maxh2HPni=1 ûiyih(xi)) ��̂ + �; for some � > 0, we an obtain a feasible solution of the full dual problemby taking (û; �̂ + �). Hene, the value V of the optimal solution an be boundedbetween �̂ � V < �̂ + �. This implies that, even if we were to potentially inlude anon-zero oeÆient for all the weak learners, the value of the objetive ��DPni=1 �ian only be inreased by at most �.We assume the existene of the weak learning algorithmH(S; u) whih seletsthe best weak learner from a set H losed under omplementation using the riterionof equation (5.10). The following algorithm results



75Algorithm 5.4.1 (LPBoost).Given as input training set: Sr 0 No weak learnersa 0 All oeÆients are 0�  0u ( 1n ; : : : ; 1n) Corresponding optimal dualREPEATr r + 1Find weak learner using equation (5.10) :hr  H(S; u)Chek for optimal solution:IfPni=1 uiyihr(xi) � �; r r � 1; breakHir  hr(xi)Solve restrited master for new osts:(u; �) argmin �s:t: Pni=1 uiyihj(xi) � �j = 1; : : : ; r0 � ui � D; i = 1; : : : ; nENDa Lagrangian multipliers from last LPreturn r; f =Prj=1 ajhjNote that the assumption of �nding the best weak learner is not essential forgood performane on the algorithm. Reall that the role of the learning algorithmis to generate olumns (weak learners) orresponding to a dual infeasible row orto indiate optimality by showing no infeasible weak learners exist. All that werequire is that the base learner return a olumn orresponding to a dual infeasiblerow. It need not be the one with maximum infeasibility. This is merely done toimprove onvergene speed. In fat, hoosing olumns using \steepest edge" riteriathat look for the olumn that leads to the biggest atual hange in the objetivemay lead to even faster onvergene. If the learning algorithm fails to �nd a dual



76infeasible weak learner when one exists than the algorithm may prematurely stopat a nonoptimal solution.With small hanges this algorithm an be adapted to perform any of the LPboosting formulations by simply hanging the restrited master LP solved, the ostsgiven to the learning algorithm, and the optimality onditions heked. Assumingthe base learner solves (5.10) exatly, LPBoost is a variant of the dual simplexalgorithm [72℄. Thus it inherits all the bene�ts of the simplex algorithm. Bene�tsinlude:1. Well-de�ned exat and approximate stopping riteria. Typially, ad ho ter-mination shemes, e.g. a �xed number of iterations, must be used for thegradient-based boosting algorithms.2. Finite termination at a globally optimal solution. In pratie the algorithmgenerates few weak learners to arrive at an optimal solution.3. The optimal solution is sparse and thus uses few weak learners.4. The algorithm is performed in the dual spae of the lassi�ation osts. Theweights of the optimal ensemble are only generated and �xed at optimality.5. High-performane ommerial LP algorithms optimized for olumn generationexist that do not su�er from the numeri instability problems reported forboosting [2℄.5.5 Con�dene-rated BoostingThe derivations and algorithm of the last two setions did not rely on theassumption that Hij 2 f�1;+1g. We an therefore apply the same reasoning toimplementing a weak learning algorithm for a �nite set of on�dene-rated fun-tions F whose outputs are real numbers. We again assume that F is losed underomplementation. We simply de�ne Hij = fj(xi) for eah fj 2 F and apply thesame algorithm as before. We again assume the existene of a weak learner F (S; u),



77whih �nds a funtion f̂ 2 F satisfyingnXi=1 yif̂(xi)ûi = maxf2F nXi=1 ûiyif(xi) (5.11)The only di�erene in the assoiated algorithm is the weak learner whih now opti-mizes this equation.Algorithm 5.5.1 (LPBoost-CRB).Given as input training set: Sr 0 No weak learnersa 0 All oeÆients are 0�  0u ( 1n ; : : : ; 1n) Corresponding optimal dualREPEATr r + 1Find weak learner using equation (5.11) :fr  F(S; u)Chek for optimal solution:IfPni=1 uifihr(xi) � �; r r � 1; breakHir  fr(xi)Solve restrited master for new osts:(u; �) argmin �s:t: Pni=1 uiyifj(xi) � �j = 1; : : : ; r0 � ui � D; i = 1; : : : ; nENDa Lagrangian multipliers from last LPreturn r; f =Prj=1 ajfj5.6 LPBoost for RegressionThe LPBoost algorithm an be extended to optimize any ensemble ost fun-tion that an be formulated as a linear program. To solve alternate formulations



78we need only hange the LP restrited master problem solved at eah iteration andthe riteria given to the base learner. The only assumptions in the urrent ap-proah are that the number of weak learners be �nite and that if an improving weaklearner exists then the base learner an generate it. To see a simple example of thisonsider the problem of boosting regression funtions. We use the following adap-tation of the SVM regression formulations. This LP was also adapted to boostingusing a barrier algorithm in [80℄. We assume we are given a training set of dataS = ((x1; y1); : : : ; (xn; yn)) ; but now yi may take on any real value.mina;�;��;� C�� + �Pri=1 ai + CPni=1(�i + ��i )s:t: Hia� yi � �i � �; �i � 0; i = 1; : : : ; nHia� yi + ��i � ��; ��i � 0; i = 1; : : : ; naj � 0; i = 1; : : : ; r (5.12)
First we reformulate the problem slightly di�erently:mina;�;��;� C�� + �Pri=1 ai + CPni=1(�i + ��i )s:t: ��Hia + �i � �yi; �i � 0; i = 1; : : : ; n� +Hia+ ��i � yi; ��i � 0; i = 1; : : : ; nai � 0; i = 1; : : : ; r (5.13)

We introdue Lagrangian multipliers (u; u�), onstrut the dual, and onvertto a minimization problem to yield:minu;u� Pni=1 yi(ui � u�i )s:t: Pni=1(�ui + u�i )Hij � �; j = 1; : : : ; rPni=1(ui + u�i ) = 10 � ui � C; 0 � u�i � C; i = 1; : : : ; n (5.14)
LP (5.14) restrited to all weak learners onstruted so far beomes the newmaster problem. If the base learner returns any hypothesis H:j that is not dualfeasible, i.e. (Pni=1(�ui + u�i )Hij > �), then the ensemble is not optimal and theweak learner should be added to the ensemble. To speed onvergene we would like



79the weak learner with maximum deviation, i.e.,maxj nXi=1 (�ui + u�i )Hij: (5.15)This is perhaps odd at �rst glane beause the riteria do not atually ex-pliitly involve the dependent variables yi. But within the LPBoost algorithm, theui are losely related to the error residuals of the urrent ensemble. If the datapoint xi is overestimated by the urrent ensemble funtion by more than �, thenby omplementarity ui will be positive and u�i = 0. So at the next iteration theweak learner will attempt to onstrut a funtion that has a negative sign at pointxi. If the point xi falls within the � margin then the ui = u�i = 0, and the nextweak learner will try to onstrut a funtion with value 0 at that point. If the datapoint xi is underestimated by the urrent ensemble funtion by more than �, then byomplementarity u�i will be positive and ui = 0. So at the next iteration the weaklearner will attempt to onstrut a funtion that has a positive sign at point xi. Bysensitivity analysis, the magnitudes of u and u� are proportional to the hanges ofthe objetive with respet to hanges in the margin.This beomes even learer using the approah taken in the Barrier Boostingalgorithm for this problem [80℄. Equation (5.15) an be onverted to a least squaresproblem. For vi = �ui + u�i and Hij = fj(xi),(f(xi)� vi)2 = f(xi)2 � 2vif(xi) + v2i : (5.16)So the objetive to be optimized by the weak learner an be transformed as follows:maxj nXi=1 (�ui + u�i )fj(xi) = maxj nXi=1 vifj(xi) (5.17)= �12 minj nXi=1 �(fj(xi)� vi)2 � fj(xi)2 � v2i � :The onstant term v2i an be ignored. So e�etively the weak learner must onstruta regularized least squares approximation of the residual funtion.The �nal regression algorithm looks very muh like the lassi�ation ase. The



80variables ui and u�i an be initialized to any initial feasible point. We present onesuh strategy here assuming that D is suÆiently large. Here (a)+ := max(a; 0)denotes the plus funtion.Algorithm 5.6.1 (LPBoost-Regression).Given as input training set: Sr 0 No weak learnersa 0 All oeÆients are 0ui  (�yi)+jjyjj1 Corresponding feasible dualu�i  (yi)+jjyjj1REPEATr  r + 1Find weak learner using equation (5.17) :hr  H(S; (�u+ u�))Chek for optimal solution:IfPni=1(�ui + u�i )hr(xi) � �; r r � 1; breakHir  hr(xi)Solve restrited master for new osts:(u; u�) argmin Pni=1(ui � u�i )yis:t: Pni=1(�ui + u�i )hj(xi) � �j = 1; : : : ; rPni=1(ui + u�i ) = 10 � ui; u�i � C; i = 1; : : : ; nENDa Lagrangian multipliers from last LPreturn r; f =Prj=1 ajhj5.7 Computational ExperimentsWe performed three sets of experiments to ompare the performane of LP-Boost, CRB, and AdaBoost on three lassi�ation tasks: one boosting deision treestumps on smaller datasets and two boosting C4.5 [79℄. For deision tree stumps



81Table 5.1: Average Auray and Standard Deviations of Boosting usingDeision Tree Stumps (r) = number of stumps in �nal ensembleDataset LPBoost (r) AB-100 AB-1000Caner 0.9657 � 0.0245 (14.7) 0.9542 � 0.0292 0.9471 � 0.0261Diagnosti 0.9613 � 0.0272 (54.2) 0.9684 � 0.0273 0.9701 � 0.0311Heart 0.7946 � 0.0786 (70.8) 0.8182 � 0.0753 0.8014 � 0.0610Ionosphere 0.9060 � 0.0523 (87.6) 0.9060 � 0.0541 0.9031 � 0.0432Musk 0.8824 � 0.0347 (205.3) 0.8403 � 0.0415 0.8908 � 0.0326Sonar 0.8702 � 0.0817 (85.7) 0.8077 � 0.0844 0.8558 � 0.0781six datasets were used. For the C4.5 experiments, we report results for four largedatasets with and without noise. Finally, to further validate C4.5, we experimentedwith ten more additional datasets. The rationale was to �rst evaluate LPBoostwhere the base learner solves (5.10) exatly, then to examine LPBoost in a more re-alisti environment by using C4.5 as a base learner. All of the datasets were obtainedfrom the UC-Irvine data repository [68℄. For the C4.5 experiments we performedboth traditional and on�dene- rated boosting.5.7.1 Boosting Deision Tree StumpsWe used deision tree stumps as a base learner on the following six datasets:Caner (9,699), Diagnosti (30,569), Heart (13,297), Ionosphere (34,351), Musk(166,476), and Sonar (60,208). The number of features and number of points ineah dataset are shown, respetively, in parentheses. We report testing set aurayfor eah dataset based on 10-fold Cross Validation (CV). We generate the deisiontree stumps based on the mid-point between two onseutive points for a given vari-able. Sine there is limited on�dene information in stumps, we did not performon�dene-rated boosting. All boosting methods searh for the best weak learnerwhih returns the least weighted mislassi�ation error at eah iteration. LPBoostan take advantage of the fat that eah weak learner need only be added into theensemble one. Thus one a stump is added to the ensemble it is never evaluatedby the learning algorithm again. The weights of the weak learners are adjusted dy-namially by the LP. This is an advantage over AdaBoost, sine AdaBoost adjusts



82prior weights by repeatedly adding the same weak learner into the ensemble.The parameter � for LPBoost was set using a simple heuristi: 0.1 added topreviously-reported error rates on eah dataset in [9℄ exept for the Caner dataset.Spei�ally the values of � in the same order of the datasets given above were (0.2,0.1, 0.25, 0.2, 0.25, 0.3 ). Results for AdaBoost were reported for a maximumnumber of iterations of 100 and 1000. The 10-fold average lassi�ation auraiesand standard deviations are reported in Table 5.1.LPBoost performed very well both in terms of lassi�ation auray, numberof weak learners, and training time. There is little di�erene between the aurayof LPBoost and the best auray reported for AdaBoost using either 100 or 1000iterations. The variation in AdaBoost for 100 and 1000 iterations illustrates theimportane of well-de�ned stopping riteria. Typially, AdaBoost only obtains itssolution in the limit and thus stops when the maximum number of iterations (orsome other heuristi stopping riteria) is reahed. There is no magi number ofiterations good for all datasets. LPBoost has a well-de�ned stopping riterion thatis reahed in a few iterations. It uses few weak learners. There are only 81 possiblestumps on the Breast Caner dataset (nine attributes having nine possible values),so learly AdaBoost may require the same tree to be generated multiple times.LPBoost generates a weak learner only one and an alter the weight on that weaklearner at any iteration. The run time of LPBoost is proportional to the numberof weak learners generated. Sine the LP pakage that we used, CPLEX 4.0 [33℄,is optimized for olumn generation, the ost of adding a olumn and reoptimizingthe LP at eah iteration is small. An iteration of LPBoost is only slightly moreexpensive that an iteration of AdaBoost. The time is proportional to the number ofweak learners generated. For problems in whih LPBoost generates far fewer weaklearners it is muh less omputationally ostly.In the next subsetion, we test the pratiality of our methodology on di�erentdatasets using C4.5.



835.7.2 Boosting C4.5LPBoost with C4.5 as the base algorithm performed well after some opera-tional hallenges were solved. In onept, boosting using C4.5 is straightforwardsine the C4.5 algorithm aepts mislassi�ation osts. One problem is that C4.5only �nds a good solution not guaranteed to maximize (5.10). This an e�et theonvergene speed of the algorithm and may ause the algorithm to terminate ata suboptimal solution. Another hallenge is that the mislassi�ation osts deter-mined by LPBoost are sparse, i.e. ui = 0 for many of the points. The dual LPhas a basi feasible solution orresponding to a vertex of the dual feasible region.Only the variables orresponding to the basi solution an be nonnegative. So whilea fae of the region orresponding to many nonnegative weights may be optimal,only a vertex solution will be hosen. In pratie we found that when many ui = 0,LPBoost onverged slowly. In the limited number of iterations that we allowed (25),LPBoost frequently failed to �nd weak learners that improved signi�antly over theinitial equal ost solution. The weak learners generated using only subsets of thevariables were not neessarily good over the full data set. Thus the searh was tooslow. Alternative optimization algorithms may alleviate this problem. For example,an interior point strategy may lead to signi�ant performane improvements. Notethat other authors have reported problems with underow of boosting [2℄. WhenLPBoost was solved to optimality on deision tree stumps with full evaluation ofthe weak learners, this problem did not our. Boosting unpruned deision treeshelped somewhat but did not ompletely eliminate this problem.Stability and onvergene speed was greatly improved by adding minimummislassi�ation osts to the dual LP (5.5) :minu �s:t: Pni=1 uiyiHij � �; j = 1; : : : ; rPni=1 ui = 1D0 � ui � D; i = 1; : : : ; n (5.18)



84where D = 1�n and D0 = 125�n . The orresponding primal problem ismaxa;�;� �+D0Pni=1 �i �DPni=1 �is:t: yiHia + �i � � + �i; i = 1; : : : ; nPri=1 ai = 1; ; aj � 0; i = 1; : : : ; r�i � 0; i = 1; : : : ; n (5.19)
The primal problem maximizes two measures of soft margin: � orresponds to theminimum margin obtained by all points and �i measures the additional marginobtained by eah point. AdaBoost also minimizes a margin ost funtion based onthe margin obtained by eah point.We ran experiments on larger datasets: Forest, Adult, USPS, and Optdig-its from UCI[68℄. LPBoost was adopted to the multilass problem by de�ninghj(xi) = 1 if instane xi is orretly lassi�ed by weak learner hj and -1 other-wise.This is just one method of boosting multilass problems. Further investigationof multilass approahes is needed. Forest is a 54-dimension dataset with seven pos-sible lasses. The data are divided into 11340 training, 3780 validation, and 565892testing instanes. There are no missing values. The 15-dimensional Adult datasethas 32562 training and 16283 testing instanes. One training point that has a miss-ing value for a lass label has been removed. We use 8140 instanes as our trainingset and the remaining 24421 instanes as the validation set. Adult is a two-lassdataset with missing values. The default handling in C4.5 has been used for missingvalues. USPS and Optdigits are optial harater reognition datasets. USPS has256 dimensions without missing value. Out of 7291 original training points, we use1822 points as training data and the rest 5469 as validation data. There are 2007test points. Optdigits on the other hand has 64 dimensions without missing values.Its original training set has 3823 points. We use 955 of them as training data and theremaining 2868 as validation data. Parameter seletion for both LPBoost and Ad-aBoost was done based on validation set results. Sine initial experiments resultedin the same parameter set for both LPBoost and CRB, we set the parameters equalfor CRB and LPBoost to expedite omputational work. In order to investigate theperformane of boosted C4.5 with noisy data, we introdued 15% label noise for all
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() USPS Dataset (d) Optdigits DatasetFigure 5.1: Validation Set Auray by � Value. Triangles are no noiseand irles are with noise.four datasets.The � parameter used in LPBoost and the number of iterations of AdaBoostan signi�antly a�et their performane. Thus auray on the validation set wasused to pik the parameter � for LPBoost and the number of iterations for AdaBoost.To avoid exessive omputation, we limit the maximum number of iterations at 25for all boosting methods as in [2℄. We varied parameter � between 0.03 and 0.11.Initial experiments indiated that for very small � values, LPBoost results in onelassi�er whih assigns all training points to one lass. On the other extreme, forlarger values of �, LPBoost returns one lassi�er whih is equal to the one foundin the �rst iteration. Figure 5.1 shows the validation set auray for LPBoost onall four datasets. Based on validation set results, we use (22,19), (25,4), (22,25),and (25,25) number of iterations for original and 15% noisy data respetively forAdaBoost in the Forest, Adult, USPS, and Optdigits datasets.



86Table 5.2: Large Dataset Results from Boosting C4.5Dataset LPBoost CRB AdaBoost C4.5Original Forest 0.7226 0.7259 0.7370 0.6638+ 15% Noise 0.6602 0.6569 0.6763 0.5927Original Adult 0.8476 0.8461 0.8358 0.8289+ 15% Noise 0.8032 0.8219 0.7630 0.7630Original USPS 0.9123 0.9103 0.9103 0.7833+ 15% Noise 0.8744 0.8739 0.8789 0.6846Original OptDigits 0.9249 0.9355 0.9416 0.7958+ 15% Noise 0.8948 0.8948 0.8770 0.6884The testing set results using the value of � with the best validation set aurayare given in Table 5.2. LPBoost was very omparable with AdaBoost in terms ofCPU time. As seen in Table 5.2, LPBoost is also omparable with AdaBoost in termsof lassi�ation auray when the validation set is used to pik the best parametersettings. All boosting methods outperform C4.5. In general, AdaBoost had the bestperformane with narrow margins. LPBoost and CRB performed omparable withAdaBoost.The omputational osts of 25 iterations of LPBoost (either variant) and Ad-aBoost were very similar. We provide some sample CPU times. These timingsshould be onsidered only rough estimates. Our experiments were performed on aluster of IBM RS-6000s used in bath mode. Sine the mahines are not all iden-tial and are subjet to varying loads, run times vary onsiderable from run to run.For eah dataset we give the seonds of CPU time on an RS-6000: Forest AdaBoost=717, LPBoost = 930; Adult AdaBoost = 107, LPBoost = 89; USPS AdaBoost =208, LPBoost = 177; and Optdigits AdaBoost = 21, LPBoost = 24.We also onduted experiments by boosting C4.5 on small datasets. Oneagain there was no strong evidene of superiority of any of the boosting approahes.In addition to six UCI datasets used in deision tree stumps experiments, we usefour additional UCI datasets here. These are the House(16,435), Housing(13,506)5,Pima(8,768), and Spam(57,4601) datasets. As in the deision tree stumps experi-5The ontinuous response variable of Housing dataset was ategorized at 21.5.



87Table 5.3: Small Dataset Results from Boosting C4.5Dataset LPBoost CRB AdaBoost C4.5Caner 0.9585 � 0.0171 0.9628 � 0.0245 0.9662 � 0.0254 0.9447 � 0.0248Diagnosti 0.9649 � 0.0263 0.9631 � 0.0280 0.9705 � 0.0186 0.9370 � 0.0364Heart 0.7913 � 0.0624 0.7946 � 0.0996 0.7867 � 0.0614 0.7880 � 0.0767House 0.9586 � 0.0339 0.9447 � 0.0525 0.9511 � 0.0417 0.9618 � 0.0289Housing 0.8538 � 0.0476 0.8656 � 0.0378 0.8785 � 0.0393 0.8173 � 0.0486Ionosphere 0.9373 � 0.0375 0.9259 � 0.0604 0.9355 � 0.0406 0.9158 � 0.0520Musk 0.8824 � 0.0543 0.9055 � 0.0490 0.9293 � 0.0284 0.8344 � 0.0340Pima 0.7500 � 0.0499 0.7279 � 0.0483 0.7478 � 0.0707 0.7286 � 0.0455Sonar 0.8173 � 0.0827 0.8317 � 0.0827 0.8140 � 0.0928 0.7011 � 0.0727Spam 0.9557 � 0.0086 0.9550 � 0.0098 0.9518 � 0.0092 0.9296 � 0.0087ments, we report results from 10-fold CV. Sine the best � value for LPBoost variesbetween 0.05 and 0.1 for the large datasets, we pik parameter � = 0:07 for the smalldatasets. Results are reported in Table 5.3. C4.5 performed the best on the Housedataset. AdaBoost performed the best in four datasets out of ten. LPBoost andCRB had the best lassi�ation performane for three and two datasets respetively.When we drop CRB in Table 5.3, LPBoost would in this ase perform the best in�ve datasets, although the parameter � has not been tuned.5.8 Disussion and ExtensionsWe have shown that LP formulations of boosting are both attrative theo-retially in terms of generalization error bound and omputationally via olumngeneration. The LPBoost algorithm an be applied to any boosting problem for-mulated as an LP. We examined algorithms based on the 1-norm soft margin ostfuntions for support vetor mahines. A generalization error bound was foundfor the lassi�ation ase. The LP optimality onditions allowed us to provide ex-planations for how the methods work. In lassi�ation, the dual variables at asmislassi�ation osts. The optimal ensemble onsists of a linear ombination ofweak learners that work best under the worst possible hoie of mislassi�ationosts. This explanation is losely related to that of [23℄. For regression as disussed



88in the Barrier Boosting approah to a similar formulation [80℄, the dual multipli-ers at like error residuals to be used in a regularized least square problem. Wedemonstrated the ease of adaptation to other boosting problems by examining theon�dene-rated and regression ases. Extensive omputational experiments foundthat the method performed well versus AdaBoost both with respet to lassi�ationquality and solution time. Experimental results have shown that boosting of C4.5deision trees improved the testing auray. From an optimization perspetive,LPBoost has many bene�ts over gradient-based approahes: �nite termination, nu-merial stability, well-de�ned onvergene riteria, fast algorithms in pratie, andfewer weak learners in the optimal ensemble. LPBoost may be more sensitive toinexatness of the base learning algorithm. But through modi�ation of the baseLP, we were able to obtain very good performane over a wide spetrum of datasetseven in the boosting deision trees where the assumptions of the learning algorithmwere violated. The questions of what is the best LP formulation for boosting andthe best method for optimizing the LP remain open. Interior point olumn gen-eration algorithms may be muh more eÆient. But learly LP formulations forlassi�ation and regression are tratable using olumn generation, and should bethe subjet of further researh.



CHAPTER 6ConlusionTurkish mustahes, or lak thereof, bristle with meaning.... Mustahessignal the di�erene between leftist (bushy) and rightist (drooping to thehin), between Sunni Muslim (lipped) and Alevi Muslim (urling to themouth). Wall Street Journal, May 15, 1997Rules of thumb an help to enhane our lives. We probably learn these rules ofthumb through the ourse of experiene. Good rules ould be regarded as \proverbs"or \rules to liveby". We might also have so alled \stereotypes" about people orplaes. What makes someone a wise person is simply that how she/he an generalizewell to solve the present diÆulties faed using past experienes. What degrades aperson's harater is his/her willingness to aept stereotypes. It ould be true thatwise people have good rules in their lives to solve problems and to live in peae. Inany ase, we should listen to our onsiene but not the stereotypes.Stereotypes are analogous to poor generalization ability of the mahine learn-ing models. We proposed several innovative tehniques in this researh to improvethe generalization ability of the mahine learning models based on apaity ontrolby using all the available information available. Our methods span a variety oflearning methods: supervised, unsupervised and semi-supervised learning. As weindiated above, how well we deal with the new problems based on our experienesimproves our lives. If we solve problems easily and in a proper way, it means thatwe have learned well from our experienes. Our aim was to develop measures andmethods to provide the same on�dene in mahine learning tehniques as well.In Chapter 3, a novel method for semi-supervised learning that ombines as-pets of supervised and unsupervised learning tehniques was introdued. The en-tral fous was to take an unsupervised lustering method, label eah luster withthe lass membership, and simultaneously optimize the mislassi�ation error of theresulting lusters. A linear ombination of both luster dispersion and luster (lass)89



90impurity measures formed the objetive funtion of learning proess. The rationalebehind this approah was that to avoid over�tting, the unsupervised omponent ofthe objetive funtion ats as a form of regularization or apaity ontrol duringsupervised learning.The method allows the user to exploit any available unlabeled data duringtraining sine the luster dispersion measure does not require lass labels. There-fore, this approah an easily be adapted to transdutive inferene, the proess ofonstruting a lassi�er using both the labeled training data and the unlabeled testdata. We used two di�erent measures for unsupervised information (luster disper-sion): Mean Square Error (MSE) and Davies-Bouldin Index (DBI). Experimentalresults show that using DBI for luster dispersion instead of MSE improves trans-dutive inferene. Minimizing DBI results in ompat and well separated lusters.DBI �nds solutions using far fewer lusters than MSE with muh greater auray.There are two types of researh ontributions in Chapter 3. These ontri-butions are in terms of both appliation of geneti algorithms and learning meth-ods. Although oating-point genome representation had been around before, it wasthe �rst time suh representation was used to solve lustering problems in genetialgorithms. We proposed a semi-supervised lustering method that used genetialgorithms. The parametri objetive funtion allowed us to solve supervised, un-supervised and semi-supervised learning problems within the same model. The ideainorporating lassi�ation information into an unsupervised algorithm and usingthe resulting algorithm for transdutive inferene methods is appliable to manytypes of unsupervised learning. These are also promising areas of future researh.The semi-supervised lustering method disussed in Chapter 3 an also be gen-eralized to regression problems. Sine eah luster de�nes a neighborhood, we anpredit the ontinuous variable within that neighborhood. Moreover, we an pre-dit the ontinuous variable in the loal neighborhoods. One ould also implementsaling for variable seletion in the semi-supervised framework. For eah variable, agene must be introdued to represent the saling fator. Saling an be either im-plemented within the same genome or an be used with another genome for salingfators within the GA.



91We examined mathematial models for semi-supervised support vetor ma-hines (S3VM) in Chapter 4. We proposed a general S3VM model that minimizesboth the mislassi�ation error and the funtion apaity based on all the availabledata. Three di�erent funtions for penalizing unlabeled points that fall in the mar-gin were disussed. Our omputational investigation foused on the minimum errorformulation for the transdutive inferene problem. We onverted this problem toa mixed-integer program that an be exatly solved using ommerial integer pro-gramming pakages. We proposed semi-supervised models both in the primal anddual spaes. We also implemented the primal model in the loal neighborhoods.By using the MIP formulation with a loal learning algorithm, a powerful salabletransdutive inferene method was reated. Our omputational experiments foundthat the loal learning method was the most e�etive overall.Sine loal methods performed well, further studies are needed to determinehow best to selet neighborhoods and to hoose the parameters within the loalS3VM-MIP. In addition, eÆient omputational methods for de�ning loality areleft for future work. Currently, for eah point a loal model is built. The resultfor the points other than query point are disarded. We might, as well, keep thoseresults for future preditions. We also examined a nonovex quadrati optimizationapproah to S3VM. Our omputational studies were less onlusive using this ap-proah. Quadrati transdutive models are extremely slow. Better formulations arewithin the sope of the future work.The methods in Chapters 3 and 4 were implemented in the feature spae. InChapter 5, we proposed a soft margin lassi�er (LPBoost) in the label spae to solvethe boosting problem. We have shown that LP formulations of boosting are attra-tive both theoretially (in terms of generalization error bound) and omputationally(via olumn generation). The LPBoost algorithm an be applied to any boostingproblem formulated as an LP. We examined algorithms based on the 1-norm softmargin ost funtions for support vetor mahines. The LP optimality onditionsallowed us to provide explanations for how the methods work. In lassi�ation, thedual variables at as mislassi�ation osts. The optimal ensemble onsists of alinear ombination of weak learners that work best under the worst possible hoie



92of mislassi�ation osts.We demonstrated the ease of adaptation to other boosting problems by ex-amining the on�dene-rated and regression ases. Extensive omputational experi-ments found that the method performed well versus AdaBoost both with respet tolassi�ation quality and solution time. From an optimization perspetive, LPBoosthas many bene�ts over gradient-based approahes:� Finite termination� Numerial stability� Well-de�ned onvergene riteria� Fast algorithms in pratie� Fewer weak learners in the optimal ensembleLPBoost may be more sensitive to inexatness of the base learning algorithm.However, through modi�ation of the base LP, we were able to obtain very goodperformane over a wide spetrum of datasets even in the boosting deision treeswhere the assumptions of the learning algorithm were violated. The questions ofwhat is the best LP formulation for boosting and the best method for optimizingthe LP remain open. Adapting eÆient optimization methods for olumn generationalgorithms suh as interior point methods ould be further investigated.Researh in support vetor regression models is very ative. Suessful modelssuh as the �-Tuning model [92℄ exist to solve regression problems. The LP formula-tion of regression problems an also be solved by olumn generation tehniques. Inaddition, for boosting regression as disussed in the Barrier Boosting approah to asimilar formulation [80℄, the dual multipliers at like error residuals to be used in aregularized least square problem. However, learly LP formulations for lassi�ationand regression are tratable using olumn generation, and should be the subjet offurther researh.
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