LEARNING WITH CAPACITY CONTROL:
A SEMI-SUPERVISED APPROACH

By
Ayhan Demiriz
A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Decision Sciences and Engineering Systems

Approved by the
Examining Committee:

Kristin P. Bennett, Thesis Adviser

Mark J. Embrechts, Member

John E. Mitchell, Member

Nong Shang, Member

Mohammed J. Zaki, Member

Rensselaer Polytechnic Institute
Troy, New York

June 2000



LEARNING WITH CAPACITY CONTROL:
A SEMI-SUPERVISED APPROACH

By
Ayhan Demiriz

An Abstract of a Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
Major Subject: Decision Sciences and Engineering Systems

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Kristin P. Bennett, Thesis Adviser
Mark J. Embrechts, Member

John E. Mitchell, Member

Nong Shang, Member

Mohammed J. Zaki, Member

Rensselaer Polytechnic Institute
Troy, New York

June 2000



© Copyright 2000
by
Ayhan Demiriz
All Rights Reserved

il



CONTENTS

LIST OF TABLES . . . . . . . . v
LIST OF FIGURES . . . . . . . . . vi
ACKNOWLEDGMENT . . . . . . .. . vii
ABSTRACT . . . . ix
1. INTRODUCTION . . . . . . . e 1
2. A Brief Literature Review on Data Analysis . . . . . ... ... ... ... 9
2.1 Introduction . . . . . . .. .. 9
2.2 Unsupervised Data Analysis Methods . . . . . . .. .. ... . ... .. 11
2.3 Supervised Data Analysis Methods . . . . .. ... ... ... .... 16
2.4 Support Vector Machines . . . . . . .. . .. ... 18
2.5 Semi-supervised Approach . . . . . ... ... ... 0L 23

3. A Genetic Algorithm Approach for Semi-supervised Clustering . . . . . . . 28
3.1 Introduction . . . . . . . . ... 28
3.2 Problem Definition . . . . . . ... ... o 30
3.2.1 First Dispersion Measure: MSE . . . . .. ... ... .. ... 32

3.2.2 Second Dispersion Measure:DBI . . . . .. ... ... .. ... 32

3.2.3 Impurity Measure: Gini-Index . . . . . . . . .. ... .. ... 33

3.3 Genetic Representation and Algorithm . . . . . ... ... ... ... 34
3.4 Experimental Results . . . . . ... ... ... ... . ... .. ... 35
3.4.1 First Dispersion Measure:MSE . . . . . . . ... ... ... .. 37

3.4.2  Second Dispersion Measure:DBI . . . . . . . ... .. .. ... 38

3.5 Conclusion . . . . .. . .. e 41

4. Optimization Approaches to Semi-Supervised Learning . . . . . . . . . .. 44
4.1 Introduction . . . . . . . ... 44
4.2 Review of SVM Problem Formulation . . . . . . ... ... ...... 45
4.3 Semi-supervised SVM . . . . . ... 48
4.4  Mixed-Integer Programming Formulation . . . . . . . ... ... ... 53
4.4.1 Local Semi-Supervised Support Vector Machines . . . . . . . . 53

il



4.4.2 Local SVM and Experimental Results . . . . .. .. ... .. o4

4.5 Nonconvex Quadratic Approach . . . . . . . .. ... ... .. .... Y
4.5.1 A Descent Algorithm for Transductive SVM . . . . . . . . .. 58

452 S*VM-IQP Results . . . . . .. ... ... 61

4.6 Conclusion . . . . . . . .. 62

5. A Column Generation Algorithm for Boosting . . . . .. .. ... ... .. 64
5.1 Introduction . . . . . . ... 64
5.2 Motivation for Soft Margin Boosting . . . . . ... .. .. ... ... 65
5.3 Boosting LP for Classification . . . . . . .. .. ... ... ... ... 68
5.3.1 LP Formulation . . . . . ... ... ... 0L 68

5.3.2 Properties of LP formulation . . . . . . . ... ... ... ... 70

5.4 LPBoost Algorithms . . . . ... ... ... 72
5.5 Confidence-rated Boosting . . . . . . . ... ... L. 76
5.6 LPBoost for Regression . . . . .. . ... ... L. 7
5.7 Computational Experiments . . . . . . . . ... ... L. 80
5.7.1 Boosting Decision Tree Stumps . . . . . . ... ... ... .. 81

5.7.2 Boosting C4.5 . . . . . . ... 83

5.8 Discussion and Extensions . . . . . . ... ... oL 87

6. Conclusion . . . . . . . .. 89
LITERATURE CITED . . . . . . . e 93

v



3.1
3.2
3.3
4.1
4.2
4.3

5.1

5.2

2.3

LIST OF TABLES

Results Using MSE in Fitness Function . . . . . .. ... .. ... ...
Results Using DBI in Fitness Function . . . . . ... ... ... .. ..
Comparison between Transductive DBI+GINI and 3-NN, LD, and QD .
Dataset Summary Statistics . . . . . . . ...
Average Error Results for Inductive and Transductive SVM Methods
Average Error Results for Transductive and Inductive Methods

Average Accuracy and Standard Deviations of Boosting using Decision
Tree Stumps (r) = number of stumps in final ensemble . . . . . . . ..

Large Dataset Results from Boosting C4.5 . . . . . ... .. ... ...

Small Dataset Results from Boosting C4.5 . . . . .. .. .. ... ...

42
%)
o6

61



2.1
2.2
3.1
3.2
4.1
4.2
4.3

0.1

LIST OF FIGURES

Inductive Learning . . . . . . . . . ..o 23
Transductive Learning . . . . . . . . . ... oo 24
Induction and Transduction Results using MSE . . . ... . ... ... 39
Induction and Transduction Results using DBI . . . . . . ... ... .. 40
Optimal Plane Maximizes Margin . . . . . . . . ... .. .. .. .... 46
Traditional SVM (a, b) versus Semi-Supervised SVM (¢) . . ... ... 49
Margin Penalty Functions . . . . . . . .. ... .. ..o 52

Validation Set Accuracy by v Value. Triangles are no noise and circles
are with noise. . . . . . . . . . e 89

vi



ACKNOWLEDGMENT

In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah,
the Cherisher and Sustainer of the worlds; Most Gracious, Most Merciful;
Master of the Day of Judgment. Thee do we worship, and Thine aid we
seek. Show us the straight way, The way of those on whom Thou hast
bestowed Thy Grace, those whose (portion) is not wrath, and who go

not astray. The Holy Qur’an, Surah 1 Al-Fatiha (The Opening).

Read! in the name of thy Lord and Cherisher, Who created- Created
man, out of a (mere) clot of congealed blood: Read! And thy Lord is
Most Bountiful, He Who taught (the use of) the pen, Taught man that
which he knew not. Day, but man doth transgress all bounds, In that he
looketh upon himself as self-sufficient. Verily, to thy Lord is the return
(of all). The Holy Quran, Surah 96 (Verses 1-8) Iqraa (Read!).

I have had many good moments during my graduate study in this city of Troy.
However I ask people whom I might have caused trouble(s) to forgive me. It was
not an easy 6 years at all. We must admit that one can not easily finish her/his
Ph.D. without isolating herself/himself from other people at some level. Yes, I did
that like the many other RPI (recently “Rensselaer”) students - unfortunately.

[ would like to first thank to my advisor Prof. Kristin P. Bennett for supporting
and encouraging me during my Ph.D. study. She has always had brilliant ideas and
eagerness to pursue them. I also would like to extend my thanks to the members of
my dissertation committee for their constructive comments and ideas. | especially
thank to Prof. M. J. Embrechts, since I had chance to expose myself to Data Mining
in his class back in 1996.

This work could not be finished without help from Academic Computing Ser-
vices at VCC. I believe that Mark D. Miller is a person whom I should remember all
my life. His efforts and prompt responses helped me to solve many computational

problems.

vil



I also would like to mention about my friends from all colors and genders. 1
will not name them though. I thank to The Muslim Community of Troy especially
Imam Djafer Sebkhaoui for helping me to keep myself spiritually sound.

This work was partially supported by NSF TRI-9702306, NSF 11S-9979860 and
NSF DMS-9872019.

Finally, I give respect and love to my family. Although they were thousands
of miles away from me, I always felt their presence in my heart. Yes, [ am married

too. Here is the place for you Honey. I love you very much!

viil



ABSTRACT

A very basic problem in machine learning is the overfitting of empirical data. This
problem occurs where learning processes construct overly strong models to explain
the dependencies within empirical data. Often these strong models fail to perform
well on the unseen data due to the strong bias towards the empirical data used in
the learning task.

In order to prevent this overfitting problem, learning algorithms use different
remedies. For example regularization and early stopping in neural networks help to
yield better models that perform well on unseen data. Pruning is used in decision
trees. Margin maximization techniques are used in Support Vector Machines. Such
solutions, in general, are examples of capacity control techniques. By limiting the
richness and the flexibility of the learning method, we expect to prevent overfitting
problem.

In this research, we introduce learning methods with new ways of handling
capacity control. These methods are used in supervised, unsupervised and semi-
supervised learning approaches by incorporating all the available information on
hand. Semi-supervised learning can exploit both labeled and unlabeled data. We
first propose a genetic algorithm based model that uses unsupervised learning and
unlabeled data (semi-supervised learning) as a new form of capacity control. We
then use unlabeled data to influence margin maximization in support vector ma-
chines as an alternative form of capacity control based on all available information.
Finally, we use capacity control in the label space for a boosting approach which
combines the outputs of the many weak learning models by linear weighting. In
general, we propose semi-supervised learning models based on both labeled and un-
labeled data as new ways of capacity control. Methods proposed in this research have

shown strong results on benchmark problems compared to alternative approaches.

X



CHAPTER 1
INTRODUCTION

Often, supervised learning problems can be posed as finding dependencies (func-
tions) between the empirical input data and the outcome of the supervisor or su-
pervision process. Three important issues must be addressed carefully in a such

learning process (adapted from [98]):

1. To estimate a function from a large set of functions.

2. To estimate such function using very limited number of examples (empirical

data).

3. To generalize well on unseen data .

Using overly strong or complex functions to define such dependencies can result
in overfitting of the data and failure to generalize. For any learning task, limiting the
richness and the flexibility of the class of functions being searched is called capacity
control. By controlling the capacity, we can practically avoid the overfitting problem
on empirical data.

The classical statistical approaches such as Maximum Likelihood (ML) method
do not solve issues listed above. Therefore many methods such as Neural Networks
(NN) and decision trees have been developed in learning framework to address these
issues since 1960’s. Classical approach uses ML for density estimation, discriminant
analysis, and regression models. Since ML might fail even in the simple cases such as
estimating the mixture of normal densities, classical parametric models might per-
form poorly in the learning process as measured by generalization on unseen data.
On the other hand, non-parametric methods such as Parzen windows are considered
to be more desirable in terms of estimating a density from a wide classes of densities
compared to the parametric methods and have better asymptotic rate of conver-
gence especially for smooth densities. Although they have remarkable asymptotic

properties, experimental studies have shown that non-parametric methods did not



perform significantly better than parametric methods when applied to very limited
number of data points [98].

There are many forms of capacity control, for example regularization and early
stopping in NN. In Bayesian inference, capacity control is performed via strong a pri-
ori. Specifically, Bayesian approaches perform well, if the function being estimated
matches with a priori class of the functions provided in the Bayesian inference. In
addition, a prior: probability distribution of these functions should reflect the real-
ity. Incomplete representation of the reality might slow down the convergence speed
of Bayesian inference. Thus, Bayesian approach requires strong a priori to control
the capacity of the learning process.

Supervised learning methods, in general, minimize a loss function based on
the discrepancy between results from the model and the response from the super-
visor. Minimizing this loss function just based on the empirical data can result in
overfitting. Structural Risk Minimization (SRM)was introduced by statistical learn-
ing theory to find a trade-off between empirical risk and functional complexity [98].
Practically, SRM implements capacity control through a complexity penalty term
[41]. In SRM, a structure is given as weak a priori to the learning process. SRM
then finds optimal parameters for such a structure. For example in classification,
according to the principles of SRM, for a fixed empirical risk level, finding the largest
margin of separation that exists within the data prevents overfitting. In contrast,
Bayesian inference has an implicit capacity control depending heavily on the strong
a priort probability function provided by the user thus requires human interface in
learning process.

In this research, different ways of capacity control are proposed based on in-
corporating all the available information on hand. For example if we are performing
a classification task based on labeled training data, we would like to exploit any
additional unlabeled data. The proposed methods perform capacity control on su-
pervised and “semi-supervised” learning.

Typically learning tasks are divided into two categories: supervised learning
and unsupervised learning. In supervised learning, training is done using data pro-

vided with the labels (e.g. dependent variable) and the resulting classifier is used



to classify unlabeled data (e.g. data with unknown dependent variable). In this
case, the expert needs to define classes explicitly and needs to label data prior to
the training phase. The results are usually compared by ranking the generalization
ability and accuracy on both labeled and unlabeled datasets.

Learning without known labels is known as unsupervised learning. Clustering
is an important example of unsupervised learning methods. Clustering is simply de-
fined as grouping similar objects. In clustering, classes or groups of the objects are
not known a prior: but rather an emergent property of the data. Clustering algo-
rithms are valuable for discovering patterns in data. In many domains, the difficulty
of labeling data and the lack of prior knowledge about classes sometimes limit us to
use clustering algorithms to analyze and to group the data. For example, in order to
classify a gene, a biochemist might have to run very expensive and time consuming
experiments. By conducting cluster analysis, similar genes can be grouped together
and results can be summarized to discover hidden relationships. Thus, useful in-
formation can be gathered from clustering even in the case of lack of information
about the domain itself. A number of clustering algorithms are summarized in [58].
But most of them suffer from the following problems:(1) Choosing and validating
the number of clusters and (2) Ensuring that the algorithmic findings represent the
reality. Moreover,as stated in [13], k-means like clustering algorithms also suffer
from the problem of evenly distributing the points among the clusters, since a sum
of squares type of objective function is minimized. To form necessary foundation for
supervised and unsupervised learning, we give a brief literature review in Chapter
2.

Depending on application domain, both supervised and unsupervised learning
methods have superior properties compared to the other one. They also suffer from
some weaknesses. For example, the validation of clusters found in cluster analysis
could be an ill-defined process. In supervised learning, the difficulty in interpreting
the classification results (unless we use a decision-tree like method) may make results
less useful.

To avoid these weaknesses and to use superior properties, a semi-supervised

approach is proposed in this research. Semi-supervised learning is defined as com-



bining both labeled and unlabeled data to accomplish a learning task. By using a
semi-supervised approach, we can control the capacity of a learning function based
on all the information from the data. One possible way of doing is introducing partial
supervision into unsupervised learning. Using the labeled data in semi-supervised
learning will yield meaningful clusters and these clusters will be homogeneous. A
semi-supervised clustering algorithm was introduced in [76]. It has been success-
fully applied to the segmentation of magnetic resonance images (MRI) as reported
in [13] and [95]. Due to the difficulty of the labeling the data in the case of im-
age segmentation, very limited number of points were labeled in [13]. A partially
supervised clustering algorithm [13] is introduced to minimize a weighted sum of
square objective function formed by using both the labeled and unlabeled data. An
iterative scheme continues until no improvement is made on the objective more than
a predetermined threshold. The prior weights and labels are determined by experts’
knowledge. The authors reported better results by using semi-supervised fuzzy
c-means algorithm compared to traditional fuzzy c-means algorithms on both arti-
ficial and MRI data [13]. Even in the case of very few labeled data, semi-supervised
method improved results.

In Chapter 3, we introduce a new way of capacity control based on a semi-
supervised clustering approach implemented with Genetic Algorithms (GA). Data
are clustered using an unsupervised learning technique biased toward producing
clusters as pure as possible in terms of class distribution. These clusters can then
be used to predict the class of future points. One key additional benefit of this
approach is that it allows unlabeled data with unknown class to be used to improve
classification accuracy. The objective function of a traditional clustering technique,
cluster dispersion in the k-means algorithm, is modified to minimize both the within
cluster variance of the input attributes and a measure of cluster impurity based on
the class labels. By contrast to k-means clustering algorithm, this implementation
finds a near optimum number of clusters for a given parameter set at the end of the
learning process. This means that optimum number of clusters is not a parameter
in the model, however it is a product of the learning process. Minimizing the within

cluster variance of the examples is a form of capacity control to prevent overfitting.



The GA method utilizes a parametric fitness function based on both cluster
dispersion metric such as Davies-Bouldin Index (DBI) [36] and a class impurity
measure such as the Gini index [24]. Having a parametric objective allows the
user to solve classification, clustering and semi-supervised learning problems by
using an appropriate parameter set. The experimental results show that using the
class information often improves the generalization ability compared to unsupervised
methods based only on the input attributes. Results from two different cluster
dispersion measures, Mean Square Error (MSE) and Davies-Bouldin Index (DBI),
are reported. Results show that using DBI in transductive model gives an advantage
to improve the overall accuracy and the quality of the clusters found by the GA
model. Benchmark studies also indicate that the method performs very well even
when few training examples are available.

Training using information from unlabeled data might help to improve classi-
fication accuracy as well. Hence an alternative approach in semi-supervised learning
is to use unlabeled data in supervised learning as proposed by Vapnik in the context
of transduction [97]. The key task in transduction is to estimate the function values
of the certain points instead of estimating function itself everywhere. This contrasts
with induction, estimating function everywhere, since transduction estimates the
labels in the working set which contains unlabeled data by implementing structural
risk minimization on all the available information from both the training and the
working sets. The capacity control is provided by margin maximization where the
margin is measured on both the labeled and unlabeled data. Since we include the
working set into our model and make use of it, one would expect to get better per-
formance in terms of accuracy which is crucial for business decisions such as credit
line issue, reviewing mortgage applications and other customer related financial ser-
vices. On the other hand, by including extra points from unlabeled data, we are
able to better understanding underlying input (population) distribution.

In Chapter 4, we introduce a semi-supervised support vector machine (S3VM)
method for capacity control. We use SVM to solve the overall risk minimization
(ORM) problem posed by Vapnik. The ORM problem is to estimate the value of a

classification function at the given points in the unlabeled working set. This con-



trasts with the standard learning problem of empirical risk minimization (ERM)
which estimates the classification function at all the possible values. We propose a
general S*VM model that minimizes both the misclassification error and the func-
tion capacity based on all the available data. We show how the S*VM model for
1-norm linear support vector machines can be converted to a mixed-integer program
(S*VM-MIP) and then solved exactly using integer programming. We implemented
this (S*VM-MIP) in AMPL and used CPLEX as an integer programming solver. Re-
sults of S*VM-MIP and the standard ERM approaches are compared on eleven data
sets. Our computational results support the statistical learning theory results on
transduction showing that incorporating the working set data improves generaliza-
tion when insufficient training information is available. In every case, S*VM either
improved or showed no significant difference in generalization compared to the ERM
approach. This was the first known model to solve transduction problem succesfully
in the literature [9].

In Chapter 4, we also propose two other variants of the S*VM . The first
approach is to use local learning to improve the convergence speed of the S*VM.
The advantages of using local learning models are very well discussed in [1]. The
basic idea is to implement S*VM in the k-nearest neighborhood of points which
results in smaller integer-programming models to solve. We report improved results
compared to S*VM for the same datasets. The local learning approach is scalable
to very large datasets. In the second approach, we investigate a gradient descent
algorithm for the quadratic transduction problem. The numerical results based on
proposed descent algorithm and the transductive algorithm based on SVM-Light [60]
do not conclusively support the transductive approach. In general, algorithms for
the quadratic transductive models are much slower and prone to local minima than
those for the linear models. Our experimental study on these statistical learning
methods indicates that incorporating the working set data for the capacity control
can improve generalization ability, but the improvements were not large.

In Chapter 5, we again focus on capacity control in supervised learning but in
a different context. In Chapter 4, the proposed algorithms perform capacity control

in the feature space (input data). In Chapter 5, we specifically focus on capacity



control in the label space using a boosting approach. The idea in boosting is to
use a linear combination of many weak classification or regression functions (called
weak learners), instead of one strong function. The resulting ensemble function
frequently performs much better than any single function. Recent works by several
people have shown boosting can be viewed as margin maximization in function space
[87, 51]. Different boosting methods (e.g. AdaBoost [87]) can be viewed as gradient
descent methods that minimize margin cost functions. In Chapter 5, we address the
problem of the sensitivity of this function to outliers by adapting the soft margin
cost function of support vector machines to boosting. Minimizing this soft margin
error function directly optimizes a generalization error bound.

We formulate the problem as if all the possible weak learners had already
been generated. The class labels produced by the weak learners become the new
feature space of the problem. The boosting task becomes to construct a learning
function in the label space that minimizes classification error and maximizes the
soft margin. The resulting linear program can be efficiently solved using column
generation techniques developed for large-scale optimization problems. The rows of
the linear program each corresponding to one weak learner are generated as needed.
The dual variables of the linear program provide the misclassification costs needed
by the learning machine. The resulting “LPBoost” algorithm has many attractive
properties. The algorithm has well defined convergence criteria. It converges in a
finite number of iterations to a globally optimal solution. In computational exper-
iments, the algorithm performs very well both in terms of computational time and
generalization ability. The algorithm requires very few iterations. Thus few weak
learners are actually generated and even fewer appear in the optimal learning ensem-
ble. Numerical experiments are conducted by using both decision stumps and C4.5
[79]. The performance of the sparse learning ensembles produced was competitive
with the other boosting approaches.

The basic idea in our research is to use all the available information in the
learning task to improve the generalization ability through the capacity control
whether extra information is in the form of raw data or outcomes from several

models. We explore new types of the capacity control in the context of supervised



and semi-supervised learning. The work here focuses on the classification problem
where the labels are chosen from a finite set. In practice, the ideas presented in this
research can be generalized to the regression problems where the data labels come
from a continuous domain. Ideas for extensions to regression are summarized in the

conclusion chapter.



CHAPTER 2

A Brief Literature Review on Data Analysis

2.1 Introduction

Historically statistics had a great impact on the traditional data analysis tech-
niques. For example Fisher’s Discriminant Analysis opened a new era in scientific
research activities. Indeed scientific research depends on a solid and profound data
and fact analysis. Classification has been used widely as a tool and representation
technique in scientific research since ancient times. In scientific research, data fre-
quently plays a central role. Depending on data an appropriate analysis technique
may be used to come up with dependable conclusions. We will briefly summarize
two major data analysis techniques in this chapter: cluster analysis based on unsu-
pervised learning and classification based on supervised learning. Then, we look at
a new area of data analysis - semi-supervised learning.

Cluster analysis is one of the very important unspervised learning methods. It
is used in various research areas such as life, social and natural sciences. Thus, we can
find different definitions for the terms cluster and cluster analysis in the literature
based on various application areas. Indeed, scientists and researchers have given
different definitions to the cluster analysis for the purpose of defining their own
research problems in a proper manner. At the most general level, a cluster consists
of similar objects collected or grouped together. Everitt documents [45] some of the

definitions of a cluster:

e A cluster is a set of entities which are alike such that entities from different

clusters are not alike.

e A cluster is an aggregation of the points in the test space such that the distance
between any two points in the cluster is less than the distance between any

two points in the cluster and any point not in it.

e Clusters may be described as connected regions of a multi-dimensional space

containing a relatively high density of points.



10

According to Hansen and Jaumard [53], clusters are required to be homoge-
neous and/or well separated. Homogeneity means that entities within the same
cluster should resemble one another and separation means that entities in different
clusters should differ one from the other.

As indicated in [69], cluster analysis is mainly used for the data analysis as a
multivariate statistical tool. It is also used for data summarization and compres-
sion. Storage and retrieval systems in hardware technologies also implement cluster
analysis to improve access time to stored information. There are also many practical
applications of cluster analysis in pattern recognition.

Besides cluster analysis as an example of unsupervised learning, we will give
brief explanation of some classification techniques as a main method in supervised
learning, particularly Support Vector Machines (SVM) to complete necessary back-
ground information. In their early work, Vapnik and Chervonenkis developed the
optimal separating plane technique for classification and later on Vapnik introduced
the idea of structural risk minimization which provides theoretical results to give
the generalization error bounds of a separating hyperplane. The structural risk
minimization and optimal separating hyperplane form the basis of SVM. Indeed,
SVM is a logical extension to the optimal separating hyperplanes method. A SVM
maps the input space into a high-dimensional feature space through some non-linear
mapping (kernel functions) chosen a priori and then constructs the optimal separat-
ing hyperplane in the feature space. This mapping makes it possible to construct
linear decision surfaces in the feature space which correspond to non-linear decision
surfaces in the input space [93]. Having the ability to form non-linear decision sur-
faces in input space makes SVM a promising classification technique as a statistical
learning method. A variation of SVM for data analysis is introduced in this study
to do semi-supervised data analysis.

The outline of the rest of this chapter is follows. Section 2.2 focuses on clus-
ter analysis, first, general approaches in cluster analysis are summarized. Later,
examples of cluster analysis implementations are given in Section 2.2. We explain
briefly some classification techniques including decision trees in Section 2.3 of this

chapter. In Section 2.4, SVM method is explained in some details as an alternative



11

learning method to the traditional ones. In Section 2.5, the semi-supervised learning

problem is discussed in general and some related works to semi-supervised learning

are reviewed.

2.2

Unsupervised Data Analysis Methods

As we mention above, a cluster is a group of similar objects based on a metric.

Similarity or homogeneity is an important measure for the objects in the same

cluster. On the other hand, we can also define the metric used in the cluster analysis

in a way to minimize dissimilarity (dispersion) within the clusters. Like any other

data analysis method, cluster analysis require some steps to follow. In their paper

[53], Hansen and Jaumard approach cluster analysis from a mathematical point of

view.

Steps of a cluster analysis in a common framework are given below.

Sample: Select a sample S of n entities among which clusters to be found

where each entity is a vector.

Data: Observe or measure p characteristic of the entities of S. This yields a

n X p data matrix X.

Dissimilarities from the matrix X a n x n matrix D = (dy;) of dissimilarities

between entities where dkl Z O, dkk = 0, dkl = dlk-

Constraints: Choose the type of clustering desired. Specify also further con-

straints on the clusters, if any.

Criterion: Choose a criterion to express homogeneity and/or separation of

clusters in the clustering to be found.

Algorithm: Choose or design an algorithm for the problem defined in Con-

straints and Criterion items.
Computation: Apply the chosen algorithm to matrix D = (dy).

Interpretation: Apply formal or informal tests to select the best clustering.

Describe clusters by their descriptive statistics.



12

Some remarks could be made about dissimilarities at this point. First, dissim-
ilarities may be computed from the sources other than a matrix of measurements X .
Second, for some methods only the order of dissimilarities matters. Third, cluster
analysis is not the only method to study dissimilarities. Fourth, instead of com-
puting dissimilarities, one can perform a different type of cluster analysis (direct
clustering) which requires using the matrix X. The clusters found by direct clus-
tering correspond to concepts. Recently, conceptual clustering has become a very
active field of research [42, 84].

There are basically five major types of clustering techniques mentioned in
[53]: subset, partition, packing, covering, and hierarchy. More emphasis is given
on the hierarchical clustering algorithms from the mathematical programming point
of view. There are two main types of hierarchical clustering. First one is the
agglomerative and second one is the divisive hierarchical clustering algorithm. Some
algorithms for partitioning type of clustering from the dynamic programming, graph
theoretical, branch and bound and cutting plane approaches are also listed.

One of the most cited references in the cluster analysis literature is written by
Jain and Dubes [58]. In this book, clustering is defined as an exclusive and unsuper-
vised classification. Clustering is exclusive in a sense each object belongs to the only
one cluster, overlapping is not allowed. It is unsupervised, because objects are not
labeled prior to implementation. Unsupervised classification (clustering) branches
into two types of classification: hierarchical and partitional. Several algorithms can

be proposed to express the same exclusive, unsupervised classification (clustering):

e Agglomerative vs. divisive: An agglomerative hierarchical clustering places
each object in its own cluster and gradually merges these atomic clusters
into larger ones. Thus, it is a bottom-top algorithm. A divisive hierarchical
clustering algorithm, in the contrast, starts with one cluster and then splits

this one down further. Thus, it is a top-down algorithm.

e Serial vs. simultaneous: Serial procedures handle the objects (patterns) one
by one in an on-line process. Simultaneous procedures handle all the objects

together in a batch process.



13

e Monothetic vs. polythetic: A monothetic clustering algorithm uses the fea-

tures (variables) one at a time.

e Graph theory vs. matrix algebra: Some algorithms are expressed in terms of
the graph theory. Some might be constructed algebraically especially using

the vector algebra.

Two most known algorithms from the graph theory are single-link and complete-
link algorithms. Single-link clusters are characterized as maximally connected sub-
graphs, whereas complete-link clusters are cliques or maximally complete subgraphs.

In partitional clustering, K-means [58] like algorithms are highly used and very
popular. This kind of algorithms has local convergence. Usually the objective is to
minimize mean square error within clusters and to maximize it between clusters.

The most important step in cluster analysis is the interpretation of the results.
One important point should be addressed carefully: the validity of clusters. Problem
might occur if different cluster methods yield different clusters which is high likely.
Which partition is the correct one? Another source of doubt in clustering results
is the number of clusters found within data. How do we know that which number
is the correct one? Since there is almost no way to know the correct answers to
these two questions, heuristic methods have been developed. Both global and local
heuristic measures are given in [57].

Cluster analysis has been applied successfully in various disciplines. Pattern
recognition is the one of the major fields. In [25], Buhmann summarizes Expectation
Maximization (EM) type algorithms for data clustering and data visualization pur-
poses. EM algorithms are stochastic optimization algorithms. Buhmann documents

two conceptual approaches to cluster analysis.

e Parameter estimation of the mixture models by parametric statistics.

e Vector quantization of a data set by combinatorial optimization.

Parametric statistics assumes that noisy data have been generated by an un-
known number of qualitatively similar stochastic processes. Each process is char-
acterized by a unimodal probability density which is modeled by a parameterized

mixture model e.g. Gaussian mixtures.



14

Vector quantization aims at finding a partition of the data set based an opti-
mization principle. Partitioning type of clustering, according to Buhmann, arises in

two different forms depending on the data format.
e Central clustering of the vectorial data.
e Pairwise clustering of the proximity data (dissimilarities).

In [25], Buhmann introduces five EM type algorithms for centroid estimation,
pairwise clustering, and Multi-Dimensional Scaling (MDS) by deterministic anneal-

ing, structure preserving MDS. All algorithms have two common steps:

e E-like step: The expectation value of the complete data log-likelihood is cal-
culated and conditioned on the observed data and the parameter estimates.

This yields the expected assignment of data to mixture components.

e M-like step: The likelihood maximization step estimates the mixture param-

eters, e.g. the centers and the variances of the Gaussians.

In [55], the authors expand the idea in [25] to active data selection for clus-
tering. The authors propose EM-like iteration scheme with the E-step replaced by
the clustering algorithm itself. They also propose a criterion for the active data
selection. They use this scheme in the data query frame. They report that the
clustering cost decreases when this criterion is implemented.

A rigorous mathematical framework of Deterministic Annealing (DA) and
Mean Field Approximation (MFA) is presented in [56]. The authors use the result
to develop algorithms for an unsupervised texture segmentation which is equivalent
to pairwise clustering problem, once an appropriate homogeneity measure has been
identified. They compare the results of these algorithms with the other well-known
ones. The optimization method used combines advantages of simulated annealing
with the efficiency of a deterministic procedure. It has been applied successfully to
a variety of combinatorial optimization problems and computer vision tasks.

Simulated annealing, a stochastic optimization strategy, has become very pop-
ular in recent years to solve image processing tasks. The random search is modeled

by an inhomogeneous discrete-time Markov-chain which stochastically samples the



15

solution space. The major disadvantage in simulated annealing is that the stochas-
tic techniques might be extremely slow. But on the other hand, a slow annealing
process yields very high quality partitions. The key idea in DA is to calculate the
expectations of some relevant parameters analytically. Authors extend the idea of
DA to meanfield annealing and they propose an algorithm for texture segmentation
by using MFA. Gibbs sampling plays an important role in both DA and MFA.

Fisher, in [46], introduces an incremental conceptual clustering algorithm. A
conceptual clustering system accepts a set of object descriptions and produces a
classification scheme over the observations. This is an unsupervised learning task.
It uses an evaluation function to discover classes with good conceptual descriptions.
Thus, it is a type of learning by observation (as opposed to learning from examples)
and it is an important way of summarizing the data in understandable manner.
COBWERB , the algorithm proposed in [46], is an incremental and hierarchical clus-
tering algorithm. It yields understandable tree structures. Incremental learning
helps reducing the cost of clustering while preserving the quality of the conceptual
description.

Clustering problems have been studied and applied in fuzzy logic. Bezdek
analyzed data supplied by NASA [15]. The data set was collected remotely from
the astronauts during space missions. He implemented a c-means fuzzy clustering
algorithm which resembles the k-means algorithms. Overlapping is allowed in fuzzy
clustering approach by fuzzy membership function. Thus an object might belong to
more than one clusters. Fuzzy c-means clustering algorithm has some limitations
e.g. it works for a very limited number (< 10) of clusters. But he reports that the
quality of clusters are noteworthy and the error rates are very low.

Recently, cluster analysis has attracted a lot of attention from the area of
data mining. One task in data mining is the search for hidden patterns that may
exist in large databases. One application of cluster analysis is to “mine” spatial
data. Ng and Han have developed the CLARANS [73] based on a randomized
search. Experimental results are promising. Spatial data mining helps to extract
interesting features, to capture intrinsic relationship between spatial and non-spatial

data, to present the data regularity concisely, and to reorganize spatial databases



16

to accommodate data semantics in order to improve performance.

We briefly summarized cluster analysis and its applications above as an ex-
ample of unsupervised learning. Our focus in this research also requires knowledge
on supervised learning methods. We summarize some classification methods in the

next section.

2.3 Supervised Data Analysis Methods

Classification methods have been used and studied very much in the machine
learning literature as well as in the other applied sciences and engineering. Among
these methods tree-like ones are very common. Thus, decision trees have received
a lot of attention from different disciplines. One of the earliest and well-known
algorithms is ID3 developed by Quinlan. In [77], Quinlan introduces ID3 which is a
top-down decision tree algorithm. A top-down algorithm starts from the root and
splits data until it reaches the termination nodes. 1D3 performs a non-incremental
learning from examples. It branches the tree using information gain as the splitting
criteria. The information gain is defined by the information theory and algorithm
checks whether it decreases or not at a given node by splitting further. ID3 has
been used extensively, since it was introduced. Recently other 1D3-like algorithms
have been developed and applied successfully [78]. The aims in developing new
algorithms are finding better decisions, having faster algorithms, and getting more
accurate learning strategies. C4.5 [78] is a very successful decision tree method.
One of the important features of C4.5 is to enable the usage of misclassification
costs. This is especially very important for the boosting applications and also for
the unbalanced datasets.

Decision trees have also been used for regression. A regression tree is a tree-
structured regression approach which allows complex models to be constructed from
several lower order models. The decision tree partitions the data and a regression
model is constructed in each partition. These models can be kept low order and
hence be more interpretable. Regression trees also have the advantage that the
simple form of the fitted function in each terminal node permits easily the study

of the statistical properties of the model. In [29], Chaudhuri, Lu, Loh, and Yang



17

propose a generalized regression tree algorithm. This method simply blends a tree-
structured nonparametric regression and an adaptive recursive partitioning with
maximum likelihood estimation. Traditional regression trees such as CART [24]
(developed by Breiman, Friedman, Ulshen, and Stone) partition the regressor space
and constant models are constructed at the leaf nodes of the regression trees. In
essence, since models are constant at the leaf nodes, decision tree regression can be
interpreted as a histogram approximation of the response surface. Since classification
is a special case of the regression, CART is also used mostly for the classification
purposes.

A large number of decision tree techniques have been proposed by the many
authors in literature. Due to the lack of space, we will mention briefly a few of them.
Lazy Decision Trees [49] were proposed by Friedman, Kohavi, and Yun in order to
overcome some problems faced by traditional decision trees. Top-down decision
tree algorithms implement a greedy approach that attempts to find a small tree.
Most of the selection measures are based on one level of lookahead. According to
authors, two related problems with the representation structure are the replication
and the fragmentation. The replication problem forces duplication of the subtrees in
disjunctive concepts. The fragmentation problem causes partitioning the data into
smaller fragments. In order to avoid fragmentation problem as much as possible, the
authors chose a test criteria that is a binary split on a single value and have allowed
algorithm to split on any feature value is not equal to the instance’s value. This
algorithm is slow compared to the top-down decision trees. The induction process
in lazy decision trees is delayed until a test instance is given. Thus it is a query
based method (a form of local learning).

In decision tree construction, splitting criteria plays an important role. Uni-
variate splits are common approach in the decision tree construction. In [6], Bennett
and Blue propose a multivariate split approach for a fixed decision tree structure.
A noteworthy point in this article is that the decision tree structure is fixed as in
neural networks. Typically in implementation of decision trees, during the training
phase a maximal tree is grown. In the pruning phase, the tree size is reduced to an

optimal level by cutting out unnecessary branches. The proposed method in [6] does



18

not require to implement any pruning algorithm in it, since it is a fixed structure.
Because of multivariate fashion, method finds better decision rules and performs
better in terms of overall accuracy. Bennett and Blue suggest using different opti-
mization and search algorithms to solve the mathematical programming model for
constructing such a decision tree.

One of the approaches for solving classification problem is the nearest neigh-
bor method which is a form of local learning. Determining a proper metric plays
very important role in this type of algorithms. In practice Euclidian-like distances
are used mostly. In [48], Friedman proposes a flexible metric and related two algo-
rithms to solve classification problems. He gives a solid statistical background on
classification problems. The curse of dimensionality, variable subset selection and
recursive partitioning are discussed from the nearest neighbor method point of view,
prior to developing algorithms in this article. The machete is a recursive partition-
ing algorithm which splits only the most relevant variable. This way is more like
a winner-take-all situation. In the opposite, the scythe tries to solve bias problem
created by splitting by the most relevant variable. Various types of the splitting
criteria such as purity index are discussed in [48].

Although numerous number of publications exist in the field of clustering and
classification, very limited number of papers were reviewed in this chapter. Support
Vector Machines has become very popular recently as a new way of machine learning
method. Following section focuses on the theory of SVM and then some applications

of them are summarized briefly.

2.4 Support Vector Machines

The classification problem has been studied extensively since Fischer intro-
duced the notion of linear discrimination in mid 30’s. Later, in the 60’s Rosenblatt
introduced the perceptron as a new way of machine learning. Until back-propagation
was discovered by Rumelhart, Hinton, and Williams [83] in mid 80’s, the percep-
tron method could not get enough attention because of some theoretic limitations.
Since the mid 80’s neural networks have become very popular in the field of pat-

tern recognition and machine learning. Neural networks are a modification of the



19

perceptron. Since the perceptron constructs a linear decision function, NN imple-
ment piece-wise linear type decision functions. A new type of learning method was
constructed by Vapnik and Cortes called The Support Vector Machines [32]. SVM
method implements the following idea: It maps input space into some high dimen-
sional feature space. Then it constructs a linear decision surface in this feature space
which corresponds to a non-linear decision surface in the original input space.

Two problems arise in this scheme: one is conceptual and the other one is
technical. The conceptual problem is how to find a separating hyperplane that will
generalize well. The dimensionality of the feature space will be huge and some
separating planes will not necessarily generalize well. The technical problem is how
computationally to treat such a high dimensional feature space (e.g. if a polynomial
degree of 4 or 5 mapping in 200 dimensional input space is used, SVM may need
to construct a billion dimensional feature space). Part of the conceptual problem
was solved in 1965 for linearly separable cases by the optimal hyperplanes (maximal
margin) method. Cortes and Vapnik [32] generalize this for linearly inseparable
cases. In the optimal hyperplane technique, it was shown that if training vectors
are separated without error, the expectation of committing error for test vectors
is bounded by the ratio between the expectation of the number of support vectors
and the number of training vectors, also called VC dimension. The generalization
ability of the learning machine depends on the capacity of the set of functions,
particularly VC dimension of these functions rather than the dimensionality of the
input space. Functions with low capacity will generalize well on the unseen data
regardless of the dimensionality of the data [99]. When the capacity is too large, the
training dataset cannot be modeled properly due to the underfitting problem. On
the other hand, If the capacity is too small, underlying model will overfit the training
dataset. Geometrically, we can explain this phenomenon by large margin classifiers.
The larger capacity in the set of functions used will result in larger margin (“fat”)
classifiers. Using a set of functions with low capacity will yield “skinny” margins
with poor generalization [34].

Having addressed a solution to the conceptual problem, in 1992 it was shown

that the order of operations for constructing a decision function can be interchanged



20

[19]. The original method required a non-linear transformation of input vectors to a
higher dimensional space followed by inner products with support vectors in the high
dimensional space. By using convolutions of the inner product in a Hilbert space, the
high dimensional mapping and inner product can be performed in a single operation.
The resulting method is called a kernel based method. This type of transformation
enables the method to construct the rich classes of decision surfaces. Cortes and
Vapnik call this type of machine learning Support Vector Machines.

Specifically, the optimal hyperplane method relies on the transformation of the
p-dimensional input vector, x;, into N-dimensional feature vector through a choice
of N-dimensional vector function, ¢, where ¢ : RP— > RN. An N dimensional

separator w and a bias, b, is then constructed for the set of transformed vectors

o(z;) = d1(z;), pa(mi)y s oy ()  i=1.n (2.1)

where n is the number of observations (input vectors).
Classification of the unknown vector, x, is done by checking the sign of the

function

Flz) = w-o(x) +b (2.2)

According to the properties of soft margin classifier method, w can be written

as
w = Zyzazqﬁ(:rl) (2.3)
i=1

where y; is the label of i"* input vector, o; is the lagrange multiplier for i*" input

vector. The linearity of product implies then
F2) =Y yicud(2)d(z;) + b (2.4)
i=1

The points x; with «; > 0 are known as support vectors, since these are the

only points that influence the solution. The core of the support vector machines is



21

the representation of the inner product as a kernel function

o(u)o(v) = K(u,v). (2.5)

The above representation is explained by Hilbert-Schmidt Theory [96]: Any

symmetric function K (u,v) with K(u,v) € Ly can be expanded in the form

K(u,v) = Z Aici i (1) di(v) (2.6)
i=1
where \; € R and ¢; are eigenvalues and eigenfunctions

/K(u,v)qﬁi(u)du = Nioi(v) (2.7)

of the integral operator defined by the kernel, K (u,v). The kernel function can be
selected based on the problem domain, but there is no common rule for using the
right kernel function. One of the most popular kernel functions is the polynomial
classifier degree of d, K(u,v) = (uv + 1)%. SVM with radial basis function can be

implemented by employing the following kernel function

lu—vll*

K(U, U) = e:rp{— 252

}. (2.8)

It is shown that support vector machines have the ability to generalize well.
The SVM method has been applied recently to different classification problems
successfully [99]. A comparison of SVM with Gaussian Kernels to Radial Basis
Function classifiers is given in [91]. The authors compare a K-means Gaussian
RBF network with an SVM and a hybrid method. The hybrid method finds center
by using SVM and then implements Gaussian RBF network. The hybrid method
performed best most of the time in their experiments. The similarities between
SVMs and other linear models such as linear discriminant, linear perceptron and
other linear models were reported in [52]. Basically, similarities exist between the
objective functions and gradient descent algorithms were used to optimize such

objective functions. These methods also show similarities in the way the duality



22

and probabilistic interpretations of the scores were exploited [52].

SVM approach has been applied to constructing decision trees by Bennett and
Blue. In [7], they compare SVM with Global Tree Optimization, a hybrid model
of SVM and GTO and some well known decision tree methods such as C4.5. They
report encouraging results for the GTO/SVM method. In most of the experiments,
the GTO/SVM method performed the best or very close to the best.

The SVM method has not only been applied to classification problems. In-
deed, It has also been adapted to a variety of problems such as non-linear principal
component analysis, regression analysis and functional approximation [96]. The re-
sults from this research are promising. Since it is a new research area, there are still
things need to be done. Kernel PCA and non-linear PCA in feature space are first
introduced in [90, 89]. The central focus in kernel PCA is to find principal compo-
nents in the higher dimensional feature space rather than to find in the input space
(linear PCA). The challenging issue in this approach is to find eigenvalues of the
kernelized covariance matrix. Algebraic decompositions are given in [5]. Although
the method is a non-linear PCA, non-linear optimization is never used in any of
the steps. Since the method does not look for the eigenvalues in the full space, it
is computationally comparable with the linear PCA. Another advantage of kernel
PCA is to find the principal components in a rich and high dimensional feature
space. This allows including non-linear terms into the principal components [5].

Other implementations are provided by authors in various articles. The im-
proving the accuracy and speed of SVM is studied by Burges and Scholkopf in
[26]. Vapnik, Golowich and Smola construct mathematics behind the functional ap-
proximation and regression estimation by using SVM [101]. They also report some
experimental results on simulated data. Support vector regression machines were
studied by Drucker, Burges, Kaufman, Smola & Vapnik in [43]. There have been
many other applications of SVM recently. Due to the space limitation, we mention
some of these applications. We will introduce semi-supervised learning approach in

the next section.



23

Unlabeled
Test
Set
Prior
Assumptions

Labeled

Predicted

Estimated
Function [——(_ Deduction Labels of
Working Set

Training
Set

!

Figure 2.1: Inductive Learning

2.5 Semi-supervised Approach

Although the idea of incorporating unlabeled data into the learning process
with the labeled data goes back to the early 80’s [97], most of the applied techniques
in machine learning deals with the labeled data in supervised learning. The unla-
beled data is used in unsupervised learning. But easily available unlabeled data in
many domains (e.g. web-based text data) [74, 67, 18] makes us to define a new type
of learning. Because of this, combining labeled and unlabeled data in the learning
process has gotten some attention from machine learning researchers.

As we stated in Chapter 1, we define semi-supervised learning problem as a
use of a training set of the points with known classes and the working set of points
without the class labels, constructing a classifier to label the working set. The idea of
incorporating unlabeled data into supervised learning goes back to late 70s and early
80s [97, 100]. One version of semi-supervised learning is the transduction defined
by Vapnik [99]. Unlike the inductive learning, transduction includes unlabeled data
in a classification scheme in the learning phase. As it is depicted in Figure 2.1,
inductive learning first, estimates a classifier function using labeled data (training
set) and some prior knowledge about domain, and finally by using this estimated
function, we classify unlabeled data in the deduction phase.

On the other hand, transduction does not require a classifier function estima-

tion everywhere. Transduction involves combining both the labeled and unlabeled



24

Labeled

Training
Set

Prior
Assumptions

Predicted
Transduction Labels of
Working Set

Unlabeled

Figure 2.2: Transductive Learning

data with some prior knowledge to estimate the values of the classification function
at working set points (unlabeled data) [99, 30], as depicted in Figure 2.2. This
way of learning is very close to human learning because we often learn things by
taking our experiences into consideration (labeled data) simultaneously with un-
known subjects (unlabeled data) to explore and speculate on them. We propose a
mixed-integer programming model for solving the transduction problem in Chapter
4.

Possible advantages of using both the labeled and unlabeled data led a group of
researchers working on web-based text classification problem to develop an algorithm
combination of the naive bayes and Expectation-Maximization (EM) algorithms

[74, 67, 18]. The two-step algorithm is outlined in [74] as follows:

e Build an initial classifier by calculating classifier parameters from the labeled

documents only (Naive-Bayes step).
e Loop while classifier parameters change.

— Use the current classifier to calculate probabilistically weighted labels for

the unlabeled documents (Expectation step).

— Recalculate the classifier parameters given the probabilistically assigned

labels (Maximization step).



25

The algorithm proposed in [74] is good particularly in the case of few labeled
and many unlabeled data such as home page categorization, UseNet newsgroup
message classification and Reuters news data. Essentially, labeling these types of
data is very expensive despite the fact that unlabeled data is easily available. EM
steps in this algorithm alternately generate probabilistically weighted labels for the
unlabeled documents, and a more probable model with a smaller parameter variance.
The key issue here is that using unlabeled data reduces the parameter variance.
Variance reduction is due to the dependence between classification parameters and
the random variable over the unlabeled data distribution.

EM based active learning methods are also considered as semi-supervised
methods [67]. The Query-by-Committee (QBC) method of active learning has been
implemented in [67]. Committee members are sampled from training data by the
posterior Dirichlet distribution based on the training data word counts. This com-
mittee then approximates the entire classifier distribution. Traditional QBC then
classifies unlabeled data and computes disagreement among the committee mem-
bers for each label prediction. Finally for labeling requests, it documents the points
on which members disagree most. The authors propose to measure committee dis-
agreement for each document using Kullback-Leibler (KL) divergence to the mean
criterion as opposed to previously employed vote entropy in which each committee
member votes with probability mass 1/k for its winning class.

The KL divergence is an information-theoretic measure of the difference be-
tween two distributions, capturing the number of extra bits of information required
to send messages sampled from the first distribution using a code that is optimal for
the second. The difference between traditional QBC and this implementation is that
an EM scheme with unlabeled data is performed after the step of finding the classi-
fier function based on committee members and before computing the disagreement
among the members for each unlabeled data point.

In [18], the authors combine labeled and unlabeled data through co-training
using a Bayesian network type of classifier. Co-training first finds weak predictors
by using the labeled data based on each kind of information (e.g. “research interests”

might be a weak predictor for a faculty home page). Using the unlabeled data, the



26

method generates a bootstrap sample from these weak predictors in the following
step. Finally a Bayesian network classifier is implemented to classify this bootstrap
sample. Authors reported some improvement compared to fully supervised training.

Another way of incorporating the unlabeled data into the learning process
is to modify the objective function, which is optimized within a learning process.
Cataltepe and Magdon-Ismail [28] proposed an augmented error, which has compo-
nents from both the labeled and unlabeled data. The authors provide an analytical
solution in the case of linear, noisy targets and linear hypothesis functions. They
also show some results for the non-linear case.

Assume a training set: {(x1, f1), ..., (zn, fn)} and the objective of the learning
process is to choose a hypothesis g,, among a class of hypotheses GG, minimizing the
test error over the test set of {(yi, h1), ..., (ye, he)}. We can define training error in

this case:

and test error as:

14
ngy] '2'

f\lr—‘

Expanding the test error will give us:

14

V4
qu v;) Z (y3)hs + - Zhﬁ-
j:l

NI[\D

Since we can not speculate on the true labels of test set, Cataltepe and Magdon-

[smail then modify this error function as follows:
1 ¢ 2 & 1 &
E(g,) =~ 2293(%‘) - gzgv(l‘i)fi’i'EZf; (2.9)
j=1 i=1 i=1
- ng i) Zf

By introducing an augmentation parameter o between 0 and 1, a more general error



27

function, called the augmented error, can be defined as:

14
Bulgs) = Bolgo) +aly 2 62u) — 3 f2), (2.10)

For @ = 0, the augmented error is equivalent to training error Fy, and for @ = 1
corresponds to Equation 2.9.

We summarized related literature in clustering, classification and support vec-
tor machines in this chapter. We also reported some work done in the field of
combining labeled and unlabeled data. We now examine the first semi-supervised
method of this research in the next chapter. A GA based semi-supervised clustering
method is proposed. From both GA and the semi-supervised learning perspectives,

the proposed method has many innovative features.



CHAPTER 3
A Genetic Algorithm Approach for Semi-supervised

Clustering

3.1 Introduction

In this chapter, incorporating label information into an unsupervised learning
approach is studied. The goal is to group both labeled and unlabeled data into
the clusters where each cluster is as pure as possible in terms of class distribution
provided by the labeled data. The advantage of such an approach is that it can
be used for both inductive and transductive inference. Moreover, unsupervised
learning provides capacity control for classification. In addition the clusters help
also characterize segments of the population likely or unlikely to possess the target
characteristic represented by the label. This additional information can be useful
for several applications. For example, in database marketing only the most pure
clusters of customer would be included in a marketing campaign and new products
may be designed to reach customers in marginal clusters. The work based on this
chapter is also reported in [39, 38].

As a base to our semi-supervised algorithm, an unsupervised clustering method
optimized with a genetic algorithm is used by incorporating a measure of classifi-
cation accuracy used in decision tree algorithms, the GINI index [24]. Clustering
algorithms that minimize some objective function applied to K-cluster centers are
examined in this chapter. Each point is assigned to the nearest cluster center by
Euclidean distance. The goal is to choose the cluster centers that minimize some
measure of cluster quality. Typically a cluster dispersion metric is used. If the mean
square error, a measure of within cluster variance, is used then the problem becomes
similar to the classic K-means clustering [58]. An alternative metric, the Davies-
Bouldin Index (DBI) [36] that is a function of both the within cluster variance and
between cluster center distances is also examined. By minimizing an objective func-
tion that minimizes a linear combination of the cluster dispersion measure and the

Gini Index, the algorithm becomes semi-supervised. The details of the problem for-

28



29

mulation are given in Section 3.2. Since the objective function is highly nonlinear
and discontinuous with many local minima, it is optimized by using the C++ based
genetic algorithm library package GAlib [102].

Genetic Algorithms (GAs) are well known for being able to deal with complex
search problems by implementing an evolutionary stochastic search. Because of
this, GAs have been successfully applied to a variety of challenging optimization
problems. The NP-hard nature of the clustering problem makes GA a natural
choice for solving it such as in [13, 62, 85, 70, 35]. A common objective function in

these implementations is to minimize the square error of the cluster dispersion:

K

E= 3% o —ml? (3.1)
k=1 zeCy,

where K is the number of clusters and the variable m; is the center of cluster C}.

This is indeed the objective function for the K-means clustering algorithms. The

algorithm proposed in [85] modifies this objective function by using the inverse of

Davies-Bouldin index defined in [36, 58] and minimizing it by using evolutionary

programming.

GAs are also implemented in [70] to minimize the function £ (3.1). Genomes
are represented by n-bit long strings where n is the number of data points. Each bit
in genomes represents cluster membership. Although proper crossover and mutation
operations are defined for this scheme, it is not a scalable algorithm due to the length
of the genomes.

There are prior studies on cluster analysis using genetic algorithms such as
an algorithm based on GAs is used for machine vision (pattern recognition) in [35].
The basic problem defined in [35] is to group objects to a fixed number of clusters.
A new gene representation, Boolean Matching Code (BMC), is defined in [35] as an
alternative way to Linear Code (LC) used in [70]. The basic idea in BMC is that
each gene represents one cluster with n binary bits where n is the number of objects.
In this case the total size of solution space is 25", Although the size of the solution

2nlogK

space in LC is , BMC reaches the convergence earlier than LC by utilizing

better crossover and mutation operations. A single gene crossover operation was



30

proposed in [35].

Since the proposed algorithm performs transduction using both labeled and
unlabeled data in the learning task, there are some substantial differences between
the proposed algorithm in this chapter and the algorithms proposed in [85, 70, 35].
But the core implementation of the GA has some similarities. Recently GA cluster-
ing was also implemented in the context of design and discovery of pharmaceuticals
[44].

In Section 3.2, the problem definition and the proposed algorithm are given.
Details about the GA implementation are given in Section 3.3. Experimental re-
sults are given in Section 3.4. A comparison with 3-nearest-neighbor and linear
and quadratic discriminant analyses is also reported in Section 3.4. Finally, we
summarize our findings in the Section 3.5.

Related approaches for combining supervised and unsupervised learning exist.
For example Learning Vector Quantization (LVQ) [61] and Constrained Topologi-
cal Maps (CTM) [31] also use the approach of adapting a primarily unsupervised
method to perform classification. This chapter helps address the interesting, but still
open question, of how well such methods can exploit the information in unlabeled
data to support transductive inference. Moreover, nearest prototype classifiers are
studied in [16, 62]. Selecting prototypes from dataset with GA is compared with

random selection in [62].

3.2 Problem Definition

Clustering, in general, is defined as grouping similar objects together by opti-
mizing some similarity measure for each cluster such as within group variance. Since
clustering generally works in an unsupervised fashion, it is not necessarily guaran-
teed to group the same type (class) of objects together. In this case, supervision
needs to be introduced to the learning scheme through some measure of cluster im-
purity. The basic idea is to find a set of clusters then minimize a linear combination
of the cluster dispersion and cluster impurity measures. More specifically, select

K > 2 cluster centers, my (k = 1,..., K), that minimize the following objective



31

function:

min B * Cluster_Dispersion + « x Cluster_Impurity (3.2)

mg,k=1,...,K

where @ > 0 and 3 > 0 are positive regularization parameters.

If « = 0, then the result is a purely unsupervised clustering algorithm. If 5 =0
the result is a purely supervised algorithm that tries to minimize the cluster impurity.
As in the K-means algorithm, each point is assumed to belong to the nearest cluster
center as measured by Euclidean distance. Each non-empty cluster is assigned a
class label corresponding to the majority class of points belonging to that cluster.
Two cluster dispersion measures from the clustering literature will be examined:
mean square error (see Section 3.2.1) and Davies-Bouldin Index (see Section 3.2.2).
It is important to note that for the induction case, cluster dispersion is based on the
labeled training data. For the transduction case, the cluster dispersion is based on
all available data, both labeled and unlabeled. For the cluster impurity measure, a
measure of partition quality common in decision tree algorithms, the Gini Index, is
used (see Section 3.2.3). Since the objective function (Eq.3.2) is highly discontinuous
with many local minima, it is optimized by using the genetic algorithm library
(see Section 3.3) GAlib. When a solution is found, it might contain clusters with
little or no points assigned to them. These clusters are deleted and relevant points
are reassigned to their nearest cluster centers. Practical details of this algorithm
are discussed in the computational results section (see Section 3.4). The resulting

algorithm can be summarized as follows:
Algorithm 3.2.1. Semi-supervised clustering algorithm
o Within genetic algorithm:

1. Determine cluster centers
2. Partition the labeled data by distance to closest cluster center.

3. Find non-empty clusters, assign a label to non-empty clusters by majority

class vote within them.

4. Compute dispersion and impurity measures:



32

— Induction: Use labeled data.

— Transduction: Use labeled + unlabeled data.
e Prune clusters with few members.

e Reassign the points to final non-empty clusters.

3.2.1 First Dispersion Measure: MSE
The average within cluster variance is frequently used in clustering techniques
as a measure of cluster quality. Commonly known as the mean square error (MSE),

this quantity is defined as:

K
1

MSE = = — my||? 3.3
=D P, (3.3)

k=1 zGC’k

where n is the number of points, K is the number of clusters, and my is the center

of cluster C}. The K-means algorithm minimizes the MSE objective.

3.2.2 Second Dispersion Measure:DBI
The Davies-Bouldin index is used as an alternative to MSE. DBI is determined
as follows [58] : Given a partition of the n points into K clusters, one first defines
the following measure of within-to-between cluster spread for two clusters, C; and
Cpfor1 <j k<K andj#k.
e; + €k
Rip=-"1—= 3.4
where e; and e, are the average dispersion of C; and C}, and Dj; is the Euclidean

distance between C; and Cj. If m; and my, are the centers of C; and Cj, then

1
&= — 3 o —m’ (35)

J J?ECJ'

and D = |[m; — mg||?, where m; is the center of cluster C; consisting of n; points.

The term R;, for each C}, is defined as



33

Rk = mam#kRj,k. (36)
Now the DBI is defined as:
K
DB(K)=1/K) R, (3.7)
k=1

The DBI can be incorporated into any clustering algorithm to evaluate a par-
ticular segmentation of data. The DBI takes into account cluster dispersion and
the distance between cluster means . Well separated compact clusters are preferred.
The DBI favors small numbers of clusters. Optimizing the DBI frequently eliminates

clusters by forcing them to be empty.

3.2.3 Impurity Measure: Gini-Index

The Gini index has been used extensively in the literature to determine the
impurity of a certain split in decision trees [24]. Usually, the root and intermediate
nodes are partitioned to two children nodes. In this case, left and right nodes will
have different Gini index values. If any split reduces the impurity, the decision tree
at that node is partitioned further and the decision rule which yields the minimum
impurity is selected. Clustering using K cluster centers partitions the input space
into K regions. Therefore clustering can be considered as a K-nary partition at a
particular node in a decision tree, and the Gini index can be applied to determine
the impurity of such a partition. In this case, Gini Index of a certain cluster is

computed as:

c

P;;
GiniPj = 1.0-> (-2)*  jinl, . K (3.8)

where ¢ is the number of classes and Pj; is the number of points belong to i class

in cluster j. n; is the total number of points in cluster j. The impurity measure of



34

a particular partitioning into K clusters is:

K .
—Tp. x GiniP;
impurity = 21T, d (3.9)
n

where Tp, is the probability of a point belonging to cluster j and n is the number
of points in the dataset.

Preliminary experiments indicated that the Gini index is generally preferable
over other impurity measures such as the number of misclassified points. If the
simple number of misclassified points is used, then the misclassified points may
be distributed evenly throughout all the clusters. The Gini Index favors solutions
with pure clusters even at the expense of total classification error. Other decision
tree splitting criterion such as Information Gain could also be used for the cluster

impurity measure [78].

3.3 Genetic Representation and Algorithm

The objective function (Eq. 3.2) defined in the previous section is discontin-
uous and non-convex. Finding an optimal solution to this problem is extremely
difficult, so heuristic search is desirable. Heuristic search approaches such as genetic
algorithms (GA), evolutionary programming, simulated annealing and tabu search
have been used extensively in the literature to optimize related problems. Genetic
algorithm approach is utilized because the objective function defined can be readily
used as a fitness function in the GA. The authors in [85, 70, 35] used their own
customized GAs for clustering. As opposed to developing a genetic algorithm from
scratch, a general purpose GA library, GAlib [102], is customized by utilizing the
floating-point representation and Goldberg’s simple GA approach [50]. This algo-
rithm uses non-overlapping populations. In each generation, the algorithm creates
an entirely new population of individuals by selecting from the previous population
then mating to produce the new offspring for the new population. This process con-
tinues until stopping criteria have been met. An elitist strategy was applied which
allows the best individual to pass to the new generation.

In a genetic algorithm application major concerns are genome representa-



35

tion, initialization, selection, crossover and mutation operators, stopping criteria
and most importantly the fitness function. The objective function (Eq.3.2), defined
above, is directly used as the fitness function without any scaling. The genome
representation consists of an array of Kp real numbers, where p is the number of
dimensions in the data and K is the number of clusters. Each set of p numbers rep-
resents one cluster center. This type of representation brings several advantages over
prior discrete representation of cluster membership. First, cluster memberships are
assigned based on Euclidean distance metric in this case instead of assigning them
based on the values of genome. Second, each genome requires less search space than
previous applications for the large datasets, since the length of the genomes depends
only on the number of clusters (K) and the dimensionality (p) of the dataset, not
the number of data points. It is therefore possible to handle the large datasets with
this representation.

Default genetic operators defined for GARealGenome class in GAlib were ap-
plied. A mutation with Gaussian noise is the default in this case. Uniform crossover
was applied as the default crossover operation. Although the uniform initializer
is used by default, the population was initialized by sampling from the data. A
uniform selection rule was used for selecting mating individuals (parents).

Two stopping criteria were applied . The algorithm stops when either of them
is satisfied. One of these criteria is the maximum number of generations. The other
one is the convergence after a certain number of consecutive generations.

The genetic algorithm yields reasonable results for both induction and trans-

duction problems. The experimental findings are summarized in the next section.

3.4 Experimental Results

The goals in this computational approach are to determine if combining su-
pervised and unsupervised learning approaches techniques could lead to improved
generalization, and to investigate if performing transductive inference using unla-
beled data for training could lead to improvements over inductive inference. Ex-

perimental study is done with eight datasets from the UC-Irvine Machine Learning



36

Repository [68]!. The datasets have all originally two-class output variable except
Housing. The output variable for this dataset was categorized at the level of 21.5.
Each dataset was divided into three subsets after a standard normalization. These
subsets are called the training, testing and working sets. Currently 40% of data is for
training, 30% is for testing and remaining 30% is for working sets. For each dataset,
two scenarios have been tested to understand the difference between inductive and
transductive inferences. For inductive inference, the algorithm is applied to labeled
training data and then tested on the test data. For transductive inference, the al-
gorithm is applied to labeled training data, unlabeled working data, and unlabeled
test data, and then tested on the test data.

Results from seven different fitness functions are reported. The two different
cluster dispersion measures, MSE (Eq.3.3) and Davies-Bouldin Index (Eq.3.7), are
applied to induction in a completely unsupervised mode (f = 1, = 0) and semi-
supervised mode (« > 0,5 > 0), and transduction in a semi-supervised mode (« >
0,5 > 0). We also tried the completely supervised case based on only the Gini index
(8 =0, =1). For transduction, both the cluster dispersion measure and the Gini
index are based on the labeled and unlabeled data. In transduction, the Gini index

(Eq.3.8) becomes:

(& P,L
GiniP; = 1.0-Y» (=2)*  jinl, . K (3.10)

im1
n; is equal to number of labeled and unlabeled points in cluster j.

The best parameter set for the problem was picked by trial and error. We use
same set of GA parameters for each dataset. The maximum number of generations
is 500, mutation probability is 0.01, probability of crossover is 0.95, and number
of generations to converge is 50. Each generation consists of 50 competing genes.
Experiments are conducted based on 10 bootstrap samples. For brevity only the
average testing set error results are reported here. A paired t-test was used to

assess the significance of difference of the testing set errors within a dataset. Errors

!The datasets and their corresponding sizes are: Bright(14 variables, 2462 points),
Sonar(60,208), Cleveland Heart(13,297), Ionosphere(34,351), Boston Housing(13,506), House Votes
(16,435), Breast Cancer Prognosis(30,569), and Pima Diabetes (8,769)



37

with a p-value less than 0.2 were considered significant. To insure that the weaker
performance of MSE was not based on poor choice of parameters, (K, 3, a) for each
dataset were chosen based on trials with the inductive MSE with Gini index? For
the DBI based results, the same values of K were used for each dataset, and the

fixed values of 5 = 0.01 and o = 0.1 were used for all datasets.

3.4.1 First Dispersion Measure:MSE

The results using the first dispersion measure, MSE, are reported in Table
3.1. The first column, MSE-only, indicates how the totally unsupervised approach
of clustering based on only the unlabeled training data would perform. The second
column, GINI-only shows how the completely supervised approach of clustering
using the GINI index on the labeled training data performs. The third column is
the proposed approach using both the MSE and GINI based on the labeled training
data. The forth column indicates how MSE+GINI performs transductive inference
when all the available data is used. A bold number is the minimum error for a given
dataset, an italic number indicates that the result is significantly different from the
transduction result. The totally unsupervised MSE-only approach always performs
significantly worse than any of the supervised methods. Surprisingly, the GINI-
only complete supervised approach was the best on four of the eight datasets. The
transductive MSE+GINI method based on all available data showed no consistent
improvements over the induction approach. This is consistent with other researchers
who have reported that doing transductive inference using a regression estimate
where the variance estimate was based on all the available data (both labeled and
unlabeled) actually degraded results [20].

The MSE based approaches showed poor performance. To examine why con-
sider the results of the MSE-based fitness functions on the cartoon example shown
in Figure 3.1. The top plot shows the induction result (using just labeled data) and
the bottom plot shows the transduction result (using both labeled and unlabeled

data) cases. Note that on the center cluster transduction does work appropriately.

2The (k,f,a) values applied for each dataset were bright (15, 0.01,0.99), sonar (7,0.1,1),
heart (7,0.25,0.75), ionosphere (7, 0.01,0.99), house (7,0.1,0.9), housing (11,0.01, 0.99), proguno-
sis (11,0.4,0.6), and pima (11,0.01,0.99).



38

The inductive MSE+GINI method does not separate the cluster in the center of the
figure, because such separation will result an impure cluster on the right. Using the
additional unlabeled data, the transductive MSE+GINI reduces cluster dispersion
by splitting the center cluster (bottom of Figure 3.1). On the other hand, both
the transductive MSE4+GINI method does not catch the downward shift of the top
right cluster. Because the added unlabeled points are roughly equal distance from
two top right cluster centers, adding unlabeled data has little effect despite the fact
that a natural gap exits between the two clusters. The MSE minimizes only the
compactness of the clusters. It is necessary to find clusters that are both compact
and well separated. The DBI index is much more effective in this regard and the
computational results are greatly improved when this cluster dispersion metric is

applied.

3.4.2 Second Dispersion Measure:DBI

The DBI dispersion measure was much more effective than the MSE with
regards to transduction. For the cartoon example, the top of the Figure 3.2 shows
the resulting partition after using DBI in fitness function for the induction case.
By using DBI, the method was able to catch the vertical shift within the data
in transductive inference. The results for the DBI dispersion measure (Eq.3.7) on
the UC-Irvine Data are reported in Table 3.2. The same experimental setup and
parameters as mentioned above were used except that the maximum number of
generations was set to 300. The same K was used as in MSE approach, but the
regularization parameters were changed due to the different magnitude of the DBI.
As a purely unsupervised approach DBI-only was even worse than MSE-only at
classification. The inductive DBI+GINI approach was not significantly different
from the GINI-Only approach. The transductive DBI4GINI was either better or not
significantly worse than GINI-only approach. Transductive DBI4+GINI consistently
produced the best classification results of all the seven approaches tested primarily
due to the more compact and better separated clusters found by DBI over MSE.
The evidence indicates that capacity control based on both labeled and unlabeled

data is much more effective using the DBI criterion than MSE.



Induction Results with MSE

10

-10

+ % O % O

Class 0-Train
Class 1-Train
Class 0-Test
Class 1-Test
Clus. Centers

+ % <O % O

-10

10

Transduction Results with MSE

10

+ % O % O

Class 0-Train
Class 1-Train
Class 0-Test
Class 1-Test
Clus. Centers

+ % <O % O

-10
-10

Figure 3.1: Induction and Transduction Results using MSE

-4 -2

10

39



Induction Results with DBI

10

10 T T T
sl
ol
a
o
ol
b
_al
* 9’;
i * o s Class 0—Train - |
* * *  Class 1-Train
o o Class 0-Test N
-8 * *  Class 1-Test woE b
+ +  Clus. Centers «
-10 | L L L L | | | |
-10 -8 -6 -4 -2 0 2 4 6 8
Transduction Results with DBI
10 T T T
sl
6l
a
o
ol
b
_al
I
i o o Class 0—Train w5
* * *  Class 1-Train
o o Class 0-Test N
-8 * *  Class 1-Test woE b
+ +  Clus. Centers «
-10 | L L L L | | | |
-10 -8 -6 -4 -2 0 2 4 6 8

Figure 3.2: Induction and Transduction Results using DBI

10

40



41

Another finding from the results is that DBI dispersion measure favors a fewer
number of non-empty clusters compared to the MSE dispersion measure. On av-
erage, using DBI dispersion measure resulted in 53.33%, 33.33%, 28.36%, 17.91%,
30.84%, 33.33%, 51.11% and 50.91% fewer non-empty clusters than MSE dispersion
measure for transductive inference on the UCI datasets respectively.

In Table 3.3, results from some other classification techniques are compared
with transductive DBI4+GINI  specifically 3-nearest-neighbor classifier, linear and
quadratic discriminant classifiers. The discriminant analysis was done using the
SAS procedure DISCRIM [86]. All results are reported on the test datasets. The
DBI-GINI is consistently one of the better methods.

3.5 Conclusion

A novel method for semi-supervised learning that combines aspects of super-
vised and unsupervised learning techniques has been introduced in this chapter.
The basic idea is to take an unsupervised clustering method, label each cluster with
the class membership, and simultaneously optimize the misclassification error of the
resulting clusters. The intuition behind this approach is that the unsupervised com-
ponent of the objective function acts as a form of regularization or capacity control
during supervised learning to avoid overfitting. The objective function now is a
linear combination of a measure of cluster dispersion and a measure of cluster impu-
rity. The method can exploit any available unlabeled data during training since the
cluster dispersion measure does not require class labels. This allows the approach
to be used for transductive inference, the process of constructing a classifier using
both the labeled training data and the unlabeled test data. Experimental results
also show that using Davies-Bouldin Index for cluster dispersion instead of Mean
Square Error improves transductive inference. This is due to the compact and well
separated clusters found by minimizing DBI. DBI finds solution using much fewer
clusters than MSE with much greater accuracy. The basic ideas in this chapter:
incorporating classification information into an unsupervised algorithm and using
the resulting algorithm for transductive inference are applicable to many types of

unsupervised learning and are promising areas of future research.



Table 3.1: Results Using MSE in Fitness Function

Induction Transduction
Data Set | MSE-Only | GINI-Only | MSE+GINI | MSE+GINI
Bright 0.06585 0.01084 0.02507 0.02263
Sonar 0.43279 0.2541 0.22951 0.26066
Heart 0.25636 0.21477 0.2 0.19659
Iono. 0.25673 0.14423 0.12788 0.12981
Housing 0.25828 0.15629 0.18874 0.16887
House 0.09846 0.06692 0.06 0.06308
Prognos. || 0.1 0.05059 0.06235 0.05235
Pima 0.32402 0.27118 0.30131 0.30393
Induction Transduction
Data Set || DBI-Only | GINI-Only | DBI+GINI | DBI+GINI
Bright 0.26897 0.01084 0.01992 0.01165
Sonar 0.50656 0.2541 0.27049 0.23771
Heart 0.3841 0.21477 0.21136 0.19155
Tono. 0.34327 0.14423 0.12885 0.13558
Housing 0.4563 0.15629 0.17086 0.15497
House 0.11769 0.06692 0.07462 0.06923
Prognos. || 0.38059 0.05059 0.04941 0.04353
Pima 0.34585 0.27118 0.28428 0.28122

Table 3.2: Results Using DBI in Fitness Function

Data Set || 3-NN LinDisc | QuadDisc | DBI+GINI
Bright 0.01247 | 0.02387 | 0.02112 0.01165
Sonar 0.2098 | 0.38025 | 0.35256 0.23771
Heart 0.19773 | 0.1745 | 0.2233) 0.19155
Tono. 0.18846 | 0.14624 | 0.1294 0.13558

Housing 0.16291 | 0.16013 | 0.19946 0.15497
House 0.06154 | 0.0414 | 0.06995 0.06923

Prognos. || 0.04235 | 0.04797 | 0.05348 0.04353
Pima 0.28777 | 0.2313 | 0.26401 0.28122

and QD

Table 3.3: Comparison between Transductive DBI+GINI and 3-NN, LD,




43

The supervised clustering method discussed in this chapter can also be general-
ized to regression problems. One could also implement scaling for variable selection.
For each variable, a gene must be introduced to represent the scaling factor. Scaling
can be either implemented within the same genome or using another genome for
scaling factors within the GA.

In the next chapter we focus on developing capacity control techniques for
supervised learning by incorporating unlabeled data into supervised learning task

based on Support Vector Machines.



CHAPTER 4

Optimization Approaches to Semi-Supervised Learning

4.1 Introduction

The focus of this chapter is mathematical programming approaches to semi-
supervised learning for classification tasks based on SVMs. The main idea of semi-
supervised learning is to construct a classifier using both a training set of labeled
data and a working set of unlabeled data. If none of the labels are known then the
problem becomes clustering. If some of the labels are known, then the problem is
classification. This chapter is based on the work reported in [9, 37].

There are many practical domains in which unlabeled data are abundant but
labeled data are expensive to generate and therefore relatively scarce (e.g. medical
diagnosis, web search, drug design, and database marketing). When the train-
ing data consist of relatively few labeled data points in a high-dimensional space,
something must be done to prevent the classification or regression function from
overfitting the training data. The key idea is that by exploiting the unlabeled data
we hope to be able to provide additional information about the problem that can
be used to improve accuracy on data with unknown labels (generalization) through
capacity control with unlabeled data.

By including the unlabeled data in the testing set (working set), semi-supervised
learning can be used to perform transductive learning instead of typical inductive
learning. In induction, the task is to construct a good discriminant function valid
everywhere. This function is fixed and applied to any future test data (Figure 2.1).
In transduction, the labeled training data and unlabeled testing data are given,
then the discriminant function is constructed based on all the available data. The
learning task is to predict the labels of only those specific test data points, not all
possible future points. This simpler task can result in theoretically better bounds
on the generalization error [99], thus reducing the amount of required labeled data
for good generalization (Figure 2.2).

For semi-supervised SVM we consider all possible labels of the test data and

44



45

assign the labels that produce the best SVM with maximum margin based on all
the available data, both labeled and unlabeled. For the purpose of this chapter we
limit our discussion to linear SVM, but these methods can be extended to nonlin-
ear support vector machines using the standard SVM approach of including kernel
functions [99, 65]. In Section 4.2, we review SVMs to give foundation to develop
semi-supervised methodology. In Section 4.3 we provide a general framework for
viewing the semi-supervised support vector machine problem. Depending on how
we penalize unlabeled data appearing in the margin the problem can be formulated
as a linear or convex quadratic program with additional equilibrium constraints,
mixed-integer constraints, or nonconvex objective terms. In Section 4.4 we exam-
ine practical approaches using the linear mixed integer program (MIP) formulation
first introduced in [9]. By incorporating the MIP within a local learning framework,
performance is greatly enhanced. In Section 4.5 we examine practical algorithms for
a nonconvex quadratic formulation. Finally, we conclude this chapter with a brief
summary and discussion of optimization issues in semi-supervised learning.

Other researchers have reported favorable results on semi-supervised methods
on web-based text classification problems, for example using an EM (Expectation-
Maximization) [74, 67], co-training in Bayesian networks [18], and a transductive
version of SVM-Light [60]. Cataltepe and Magdon-Ismail [28] propose augmented
error, which has components from both labeled and unlabeled data. They provide an
analytical solution in the case of linear, noisy targets and linear hypothesis functions.
They also show some results for the non-linear case. Theoretical results exist [27]

on the relative value of labeled and unlabeled data.

4.2 Review of SVM Problem Formulation

The underlying problem of interest is to estimate a classification function f :

RP — {+£1} using input-output training data from two classes

(@1, y1), -y (Tn,yn) € RP x {£1}. (4.1)



46

Class 1
A A
R B w-z=b+1
w-r=0»b
ffffffff Gog- Wz =01
° [e]
Q o °

Class -1

Figure 4.1: Optimal Plane Maximizes Margin

The function f should correctly or almost correctly classify unseen examples (x, y),
ie. f(x) = yif (x,y) is generated from the same underlying probability distribution
as the training data. In this section we limit discussion to linear classification
functions. If the points are linearly separable, then there exist an p-vector w and

scalar b such that

w-r;—b>1 ify; =1, and
w-r;, —b< -1 ify=-1,i=1,...,n

or equivalently
yilw-z; — b >1,i=1,... ,n. (4.3)

The “optimal” separating plane, w - & = b, is the one that is furthest from the
closest points in the two classes. Geometrically this is equivalent to maximizing the
separation margin or distance between the two parallel planes w - = b+ 1 and
w-z =0b—1 (see Figure 4.1).

The “margin of separation” in Euclidean distance is 2/ ||w||, where ||w||, =
VY7 w? is the 2-norm. To maximize the margin, we minimize ||w]|, /2 subject
to the constraints (4.3). According to structural risk minimization, for a fixed
empirical misclassification rate, larger margins should lead to better generalization
and prevent overfitting in high-dimensional attribute spaces [98]. The classifier is
called a support vector machine because the solution depends only on the points
(called support vectors) located on the two supporting planes w -z = b — 1 and

w-1r=>5b+1.



47

In general the classes will not be linearly separable, so the generalized optimal
plane problem (4.4) [32, 98] is used. A slack term 7; is added for each point such
that if the point is misclassified, 7, > 1. The quadratic programming formulation is

(SVM-QP):

in CY n+=
win O it 5 Il

4.4
st ylwexz; — b+ >1 (44)

7]220; i:1,...,n

where C' > 0 is a fixed penalty parameter. The capacity control provided by the
margin maximization can greatly improve generalization [100, 97]. Typically, the

following dual form of (4.4) is solved in practice:

1 n n n
min 5 Z Z YiY;0i0 X5 - Ty — Z a;
i=1

[0}
i=1 j=1

s.t. Zaiyi =0 (4.5)
i=1
OSOLZSC izl,...,n

The Robust Linear Programming approach to SVM is identical to SVM-QP

except the margin term is changed from the 2-norm ||wl||, to the 1-norm, ||w||, =

"_1 lw;j]. The problem becomes the following robust linear program (SVM-RLP)
11, 21, 8]:

n D
min C’g M + E 5,
W.b,s,m - ;

=1 7=1

st. ylw-z; —b+mn >1 (4.6)
7, >0, 1=1,...,n
—8§; <= WwW; <= 8y, j=1,...,p.

The RLP formulation is a useful variation of SVM with some nice characteris-

tics. The 1-norm weight reduction still provides capacity control. The results in [64]



48

can be used to show that minimizing ||w||; corresponds to maximizing the separa-
tion margin using the infinity norm. Statistical learning theory can be extended to
incorporate alternative norms. For example, an adaptive weighted euclidian norm
is implemented in the structural risk minimization framework [94]. One major ben-
efit of SVM-RLP over SVM-QP is dimensionality reduction. Both SVM-RLP and
SVM-QP minimize the magnitude of the weights w. But SVM-RLP forces more
of the weights to be 0 due to the properties of the 1-norm. This results in dimen-
sionality reduction since variables with 0 weights can be removed from the model.
Another benefit of SVM-RLP over SVM-QP is that it can be solved using linear
programming instead of quadratic programming.

SVMs are easily generalized to nonlinear discriminants through the intro-
duction of kernel functions [99, 65]. The basic idea is that the data are mapped
nonlinearly to a higher dimensional space and a linear SVM is constructed in the
transformed space corresponding to a nonlinear classifier in the original space. We
limit our formulation to the linear classification problem in this section and leave

computational studies of these approaches extended with kernels to later sections.

4.3 Semi-supervised SVM

Our semi-supervised support vector machine approach can be illustrated by a
simple example. Consider the two-class problem shown in Figure 4.2(a). Since the
labeled training sets are linearly separable, there exists an infinite number of possible
separating planes that correctly classify the two sets. Intuitively, the best linear
classifier is the middle plane shown that separates the two sets with the greatest
margin. The margin is the sum of distances from the closest points (the support
vectors) in each set to the plane or equivalently the distance between the supporting
planes for each set. The supporting planes are shown using dotted lines. Statistical
Learning Theory proves that for a given misclassification error, maximizing the
margin of separation minimizes a bound on the expected misclassification error
on future unseen data [99]. Maximizing the margin reduces the capacity of the
function to fit data. Intuitively, a “fat” plane with wide margin has less capacity

to fit data than a “skinny” one. In SVM, the optimal plane can be found using



49

o A A A
A A
® o
A A A A L4
A A b A .A. °
.. [
,,,.,,,., ,,,,,,, ., ,,,,,,,,,,
0 ------- ®-------- o ----
[ ]
******** G- ® O o
(@] (o]
@] e}
] ® O
O o © e]

O ¢]
(a) Induction - train  (b) Induction - test

o
(c) Transduction

Figure 4.2: Traditional SVM (a, b) versus Semi-Supervised SVM (c)

quadratic or linear programming depending on the metric used to measure the
margin distance [99, 98, 4]. Consider now the additional unlabeled test data shown
in Figure 4.2(b). The SVM performs poorly on this particular test set in terms of
classification accuracy of the testing data. Note also that the resulting margin for
the combined labeled training data and unlabeled testing data is very small. If we
construct the SVM margin that correctly classifies the training data and achieves
the widest margin based on all the data, the results found by our semi-supervised
SVM are significantly improved and the preferable plane is shown in Figure 4.2(c).
Results in statistical learning theory show that, for a fixed misclassification error,
maximizing the margin based on all the data (train and test) can lead to better
bounds on the expected generalization error [99].

The basic idea of semi-supervised support vector machines is that we want the
best support-vector machine on the labeled data that has no or very few unlabeled

points in the margin. Thus we want to penalize the support vector machine if



50

unlabeled points fall in the margin. Specifically, we define the semi-supervised

support vector machine problem (S*VM) as:

n n+t
min i + g(w-z; =b)| + || w ||
W.b,n,€,2 l_zl j;rl J (4.7)
s.t. yiw-z;, =b)+mn,>1 1,>0 i=1,...,n

where C' > 0 is a fixed misclassification penalty parameter and g(«) is the
margin penalty function on unlabeled data z; j =n+1,...,n+¢.

The question then is how to define g. For a hard margin approach in which no
unlabeled points are allowed in the margin, the margin penalty function is defined
as

Iol(@) = o0 for —1l<a<l (48)

0 otherwise

If an unlabeled point falls outside the margin, it is considered well-classified and no
penalty is incurred.

We can transform the hard margin g, problem into a linear or quadratic
program with an additional equilibrium constraint. We start with either SVM for-
mulation, (4.4) or (4.6), and then add two constraints for each point in the working
set. One constraint calculates the misclassification error as if the point were in class
1 and the other constraint calculates the misclassification error as if the point were
in class —1. We add a constraint that forces one of the two misclassification er-
rors per point to be zero. This produces the following mathematical programming

problem with equilibrium constraints:



51

min C |+ w
win Z_Zl ni| + 1wl
s.t. yiw-z; =b)+mn,>1 ;>0 i=1,...,n

. (4.9)

fj'ZjZO 7:n—|—1,,n—|—€

The requirement that no unlabeled points may fall in the margin may be too
strong. A natural relaxation of the problem would be to move the equilibrium
constraint into the objective and use it as the margin penalty function g. This

results in the following nonconvex quadratic optimization problem:

n n+4
Wb,z i=1 j=n+1
s.t. yiw-z;+0)+n>1 7,>0 i=1,...,n (4.10)

w-x; —b+&§>1 >0 5=n+1,... . n+/
—(w-z;—b)+2z>1 2,>0

Close examination of this choice of error function shows that it has attractive
properties. If the unlabeled point z; falls outside or on the margin then §; or z; is 0,
and there is no error associated with that point. If the point falls in the margin, then
fory=w-z; —b, & =1~ and z; = 1 + 7 by construction of the support vector
machine. The following piecewise quadratic margin penalty function is produced

(see Figure 4.3(a)):

or —1l<vy<l1
! 7 (4.11)
0 otherwise.

Another natural choice would be a margin penalty function that calculates
the minimum of the two possible misclassification errors. The final class of a point

corresponds to the one that results in the smallest error. This is the transductive



52

(a) g2(7) (b) g1(v)

Figure 4.3: Margin Penalty Functions

idea as proposed by Vapnik [99]. It has the advantage that if the correct labels are
found, the resulting SVM will be identical to the one produced if the points were

known. The minimum error formulation is [9]:

n n+4
Whin O Y mit > min(gz) |+ w
B i=1 j=n+1
s.t. YWz +0)+m>1 5, >0 i=1,...,n (4.12)

w-x; —b+&§>1 >0 5=n+1,... ., n+/
—(wez; =) 42z, >1 2 >0

The resulting margin penalty function is shown in Figure 4.3(b)

9g)=g(y) = 1—|y| for —1<y<1

(4.13)
0 otherwise

For our experimental study of practical methods for solving these problems we
focused on the minimum error formulation (4.12). But this is not to say that other
formulations are not possible or preferable. In the next two sections we explore two

different approaches to practically solving this problem.



93

4.4 Mixed-Integer Programming Formulation

Integer programming can be used to exactly solve SVM (4.12). The basic
idea is to add a 0 or 1 decision variable, d;, for each point x; in the working set.
This variable indicates the class of the point. If d; = 1 then the point is in class
1 and if d; = 0 then the point is in class —1. This results in the following mixed

integer program (S*VM-MIP):

n n—+¢
min C ; + o+ w
W.bn.¢.z2,d Z_Zl I j_nzﬂ(gﬂ J) || ||1
s.t. yi(w.:ri—b)—kniZl >0 1=1,...,n (4‘14)

Wl‘]*b+€]+M(1*d])2]_ 6320 ]:n-l-l,,n—l-f

The constant M > 0 is chosen sufficiently large such that if d; = 0 then &; = 0 is
feasible for any optimal w and 0. Likewise if d; = 1 then z; = 0. In this chapter,
we use the 1-norm of w in the objective.

A globally optimal solution to this problem can be found using CPLEX or other
commercial mixed integer programming codes [33] provided computer resources are
sufficient for the problem size. Using the mathematical programming modeling
language AMPL [47], we were able to model S*VM easily and solve it using CPLEX.
One practical limitation of this approach is the capacity of the MIP solver used.
Using CPLEX 4.0 on a Sun Ultra 1 with 700MB RAM we found it was practical to

include at most 50 unlabeled data points due to the CPU time limitation.

4.4.1 Local Semi-Supervised Support Vector Machines

To get around the practical restriction on the number of integer variables and
thus unlabeled data can be handled by our MIP solver, we utilized the S*VM-MIP
as part of a local learning algorithm. In local learning, a point is classified based on
points in its “neighborhood”. For example, in the K-Nearest-Neighbor algorithm
(K-NN), the K nearest neighbors to a point (by Euclidean distance or some other
metric) are found and then the point is assigned the majority class of the K nearest

neighbors. Local learning methods are often called memory-based methods, because



54

)

training examples are kept in “memory” and used to classify new points. Since the
local models have fewer training examples, it takes much less computational time
to optimize each local SVM than to train one global one at the expense of many
local models. Previous empirical studies have shown that the generalization ability
of local methods often exceeds that of global ones since the local models include
only the points which are related to the query point (interested unlabeled data) in
a given learning task. Many variations exist for both selecting the neighborhoods
and determining the output class based on the neighbor. For example, Discriminant
Adaptive Nearest Neighbor [54] uses local discriminant analysis to estimate the class

within K-NN classification. Lawrence et al. [63] use local neural network models

for function approximation. See [1] for a survey of approaches.

4.4.2 Local S°VM and Experimental Results

Local S?VM is nothing but an application of S*VM in a local neighborhood
of each unlabeled point as determined by the K-NN algorithm using Euclidean
distance. This neighborhood includes both labeled and unlabeled examples. In
order to have enough labeled examples in each neighborhood, we arbitrarily pick K
as 10% of all available data points. Further study is needed on how to best select the
neighborhood of a point. We can summarize the method (Local-S*’VM) to classify

a given unlabeled point in the following steps:

1. Find K-NN for a given unlabeled point.

2. If all the labeled points in the neighborhood are in one class, then label the

unlabeled point as in that class and end. Otherwise continue.
3. Solve the S*VM-MIP (4.14) in the neighborhood.

4. Label the point according to the result of S*VM .

There are many advantages to using Local S*VM over using a single global
S*VM. In transduction for any data, we need to construct a new model. So the
fact that local S?VM must compute a new model for each point is also true for any

transductive algorithm. Although there are as many models as unlabeled points



%)

Table 4.1: Dataset Summary Statistics

Data Set | Dim | Points || Test-size
Bright 14 2462 || 50*
Cancer 9 699 70

Diagnostic | 30 569 o7
Dim 14 4192 || 50*
Heart 13 297 30

Housing 13 506 o1

[onosphere | 34 301 35
Musk 166 476 48
Sonar 60 208 21
Pima 8 769 50%*

to solve in Local S*VM | the overall computational time of the algorithm including
time to find the local neighborhood is generally less than the global S*VM algorithm.
This is because we have fewer unlabeled points in each local model which means
we have fewer binary variables in each model. Having fewer binary variables results
in less running time for each local model. Another advantage is that the overall
classification function by Local S*VM is nonlinear (piecewise linear to be exact)
when a linear S*VM is used locally.

Determining nearest neighbors of a point can become problematic for large
datasets. One must consider an appropriate metric and method to find K-NN.
Since we use datasets which have relatively small dimensions, we use Euclidean
distance combined with a partial sort algorithm [71] to find the local neighborhood.
As mentioned in the outlines of the algorithm, for each unlabeled point, a related
data file is created and the S*VM model is solved using AMPL. Then the output of
AMPL is analyzed to find the label of the point.

Our computational study of S*VM consisted of 10 trials using the ten real-
world data sets described in Table 4.1 (eight from [68] and the bright and dim
galaxy sets from [75]) ®. The basic properties of the datasets are summarized in
Table 4.1. Each dataset is sampled randomly 10 times and each working set (test
set) is composed of 10% of the data except the Bright, Dim, and Pima datasets in

3The continuous response variable in Housing dataset was categorized at 21.5



56

Table 4.2: Average Error Results for Inductive and Transductive SVM

Methods

Data Set || SVM-RLP | S?V M | Local SVM | Local S’V M | 3-NN
Bright 0.02 0.018 0.008 0.006 0.028
Cancer 0.036 0.034 | 0.06 0.059 0.034
Diagnostic || 0.035 0.033 | 0.039 0.039 0.039
Dim | 0.064 0.054 | 0.042 0.044 0.074

Heart 0.173 0.16 0.257 0.253 0.17
Housing 0.155 0.151 0.118 0.124 0.177
Tonosphere || 0.109 0.106 | 0.117 0.109 0.129
Musk 0.173 0.173 0.092 0.085 0.208
Sonar 0.281 0.219 0.181 0.143 0.171
Pima 0.22 0.222 0.22 0.218 0.264

which the size of the working set is set to 50 points and rest of the data are used

as the training set. We use the following formula to pick the penalty parameter:

C = )5(17;3‘2) with A = 0.001, n is the size of the training set, and ¢ is the size of the
working set. The average working set errors are reported in Table 4.2. The best
result from different models is underlined for each dataset.

Columns two and three of Table 4.2 provide a comparison of the inductive
linear 1-norm support vector machine (SVM-RLP 4.6) with the transductive linear
I-norm SVM optimized used mixed integer programming (S*VM-MIP 4.14). On
all ten datasets, the transductive SVM-MIP results are either slightly better or
not significantly different than the inductive results found using SVM-RLP. Note
that all parameters of the formulations are identical; the only difference between
the two formulations is the use of unlabeled data for the transductive case. For this
formulation, unlabeled data seems to help and never hurt generalization.

Columns 4 and 5 of Table 4.2 compare an inductive version of Local SVM and
the transductive version of Local S*VM . In our study, the neighborhoods of points
used by both Local SVM and Local S?VM are identical. Thus for each testing
set point the optimization problem solved by local S*VM is identical to the one
solved by local SVM once the terms involving the unlabeled data are removed. This

was done to ensure that the introduction of unlabeled data was the only change



o7

in the experiment. But in fact, it means the unlabeled data are being used to
determine the effective size of the neighborhood for Local SVM which in itself is a
form of transduction. Column 6 of Table 4.2 gives results for the 3-nearest-neighbor
algorithm. This was done to examine improvements that occur by simply switching
to a local algorithm. Local S*VM outperformed or did as well as Local SVM on
eight of the ten datasets, once again supporting the transductive hypothesis. The
improvements cannot be simply attributed to a local learning strategy since 3-NN
did worse than both Local SVM and S*VM on nine of ten datasets.

Overall, Local S*VM was consistently the best or almost the best in our ex-
periments. Either SVM or the Local S?VM obtained the best results on most of
the datasets except Dim and Housing datasets. The results indicate that using the
labeled and unlabeled points in a transduction model can improve accuracy. Lo-
cal S*VM resulted in better accuracy than S*VM on six datasets. One noteworthy
point is that in some cases (Sonar, Musk, Housing, Bright) Local S*VM improved
accuracy notably. On Cancer, Diagnostic, Heart, and lonosphere the fact that
S*VM performed best indicates that if the neighborhood of Local S*VM is increased,
Local S*VM could perform better. The best method of choosing neighborhoods for
local methods is still very much an open question. The proposed algorithm in this
section takes into consideration only one unlabeled point at a given time. Although
there might be many unlabeled points in a given neighborhood, the algorithm re-
turns the results only on the test point of interest. The results for other points are
basically discarded. Omne extension would be keeping these results for a final vote
at the end of the algorithm. In this case, we can assign a probability of class mem-
bership for a certain point. The results from one point can also be used as starting

points to improve the solution time of Local SV M on nearby points.

4.5 Nonconvex Quadratic Approach

An alternative approach to solving the minimum error S*VM problem (4.12)
is to convert it into a nonconvex quadratic program. We adapt the approach used
previously to handle disjunctiveness of classification labels within the bilinear sepa-

rability [12] and global tree optimization problems [17, 3, 12]. Once again a decision



58

variable d; is introduced for each point such that at optimality if d; = 1 then the
predicted class of x; is 1 and if d; = 0 then the z; is predicted as class -1. The
resulting problem is (S*VM-QP)

n n+4
whin - C domi+ Y (di&+ (1—dj)z) | +5 [ w?
TR i=1 j=n+1
s.t. yw-z; —b)+m>1 7,>0 i=1,...,n (4.15)

wezi—b+&>1 >0 j=n+1,...,n+/¢
—(w-z;—=b)+2z>1 2>00<d; <1

An intuitively simple approach is to adapt a block coordinate descent algorithm
(e.g. [14]) which alternates between fixing d and estimating the SVM weights w, b
and other dependent variables, and optimizing d with the other SVM variables fixed.
In [17], it was shown for a class of problems that includes S*VM-QP (4.15), using
2-norm || w ||? such an approach will converge in a finite number of iterations to
a solution satisfying the minimum principal necessary optimality conditions. No
linesearch is required. The proof in [17] does require each subproblem be solved
to optimality, but this condition can be relaxed to require only a strict decrease in
the objective function. On the global tree optimization problem [3, 17] , the block
coordinate descent algorithm was found to be very prone to local minima so a tabu
search method was used. When applied to transduction, we also found this simple
algorithm to be very prone to local minima and thus do not report the results here.
To improve the results, we developed a heuristic variation of the block coordinate

descent algorithm. We introduce this algorithm in the following section.

4.5.1 A Descent Algorithm for Transductive SVM

The essential idea behind our heuristic approach is that we start by heavily
penalizing solutions with points falling within the margin and then relax this re-
quirement in order to find solutions with wider margin. Just as in the basic block
coordinate descent method, we first estimate the labels (d;, j =n+1,... ,n+/{)

based on our current estimate of the SVM, and then solve S*VM-QP with d fixed.



59

Note that in practice and for easy introduction of nonlinearity via kernels we solve
the dual of Problem (4.15) which for fixed d reduces to the usual dual SVM problem
(Eq. 4.5) tailored for transduction :

1 n+f n+/ n+4
moin 3 Z Z vy K (x, x5) — Z %
i=1 j5=1 =1
o (4.16)

s.t. Zalyl =0
i=1

0<o;<C 1=1,... ,n+/

where y; = 2% (d; — 1) for j =n+1,... ,n+{, K(-,-) is a kernel function. This
process is repeated until a local minimum is reached. Then the weight on the
misclassification error C' is decreased allowing wider margins. In order to escape
from local minima, the algorithm switches the labels of unlabeled data close to
the separating hyperplane, if necessary. For this purpose, we check the consecutive
solutions to track local minima. If 10 consecutive solutions are the same we assign
the opposite labels to the points satisfying |w - ;.1 — b] < S. Occasionally a local
minima is found with all points classified in one class (w = 0). In this case, the

algorithm restarts using the same initial conditions except for a reduced margin

A

penalty parameter C for the unlabeled data. We empirically picked C = T

because it performed well in most cases. To ensure a good starting solution, the
initial label assignments are made based on the closest class center for each unlabeled

point. The resulting algorithm can be summarized as follows:
Algorithm 4.5.1. S VM-IQP

e Find class centers from training points

e Assign labels dy to working set according to the closest class center

e Initialization: 1 =0, A=10.9, C = counter =0, S = 0.2.

A
T00%(1—A) ’

o While 1 < max_teration



60

1. Fiz d; and solve Problem 4.15 (or its dual (4.16)) to find (W1, biy1, i1,
i1, Zit1).

2. Fiz (Wiy1,bi01, 001, &1, 2iv1 ) and solve Problem 4.15 for d;.

3. Check convergence criteria

— If solution is same as the previous one
then counter=counter +1 and A\ = XA 0.9
else if there exists no point within margin
then stop

else let counter =0

— if counter > 10 then let counter = 0 and assign the opposite labels
to the points satisfying |w; 1 - x — b1 < S

— if solution is all-in-one-class then reassign initial conditions

except i and let Ax = 0.9
4. 1=1+1

As a benchmark for transductive SVM, we report results from SVM-Light
proposed by Joachims in [60, 59]. Transductive SVM-Light also can be viewed as
a block coordinate descent algorithm that alternates between estimating the class
labels and optimizing the SVM based on those labels. Transductive SVM-Light
has an inner and an outer loop. The outer loop adjusts the penalty parameters on
misclassification errors. Different errors are used for the unlabeled data according
to their estimated class labels. After initial inductive iteration, the algorithm starts
with low penalty terms for unlabeled data. Two penalty terms (C*,C%) are used
in transductive SVM-Light, each for classifying an unlabeled point as a class -1 or
a class 1 object respectively. Then it uniformly increases the influence of unlabeled
data up to a user-defined penalty level. During this phase, the algorithm tunes
these penalty terms in a way to satisfy a user-defined bias in data. The inner
loop optimizes the SVM for the given penalties. The inner loop switches the labels
of two given points, if such an action reduces the overall error. Like S*VM-IQP,
SVM-Light alternates the labels to avoid local minima. The primary difference
is that SVM-Light changes the signs of at most two points at a time. Another



61

Table 4.3: Average Error Results for Transductive and Inductive Meth-

ods
Data Set || SVM-QP | SVM-Light | S’VM-IQP
Heart 0.16 0.163 0.1966
Housing 0.1804 0.1608 0.1647
[onosphere || 0.0857 0.1572 0.0943
Sonar 0.1762 0.2524 0.1572

difference is SVM-Light uses different margin penalty parameters for class 1 and
class -1 objects. In addition, unlike S*VM-QP, it starts with lower values for margin
penalty parameters. Details of SVM-Light and successful results on large datasets
can be found in [60]. We use the default parameter options in our experiments with

SVM-Light.

4.5.2 S*VM-IQP Results

In this section we compare S*VM-IQP with SVM-QP (Eq. 4.5) and trans-
ductive SVM-Light. We use the same datasets as in the previous section. Due
to the long computational times for S*VM-IQP and transductive SVM-Light, we
limit our experiments to only the Heart, Housing, Ionosphere, and Sonar datasets.
Linear kernel functions are used for all methods used in this section. The results
given in Table 4.3 show that using unlabeled data in the case of datasets Heart and
Ionosphere affects generalization ability slightly but the difference between the best
transductive result and SVM-QP (Eq. 4.5) is not statistically significant. In the
other two cases (Housing and Sonar), the best transductive method outperforms
SVM-QP significantly. On two datasets S’VM-IQP performs significantly better
than transductive SVM-Light and in one case (Housing) the difference between two
methods is not statistically significant.

As indicated above, the results from both S*VM-IQP and SVM-Light are in-
conclusive. Both algorithms are much more expensive than their inductive versions.
From the results on the mixed integer programming approaches we know that trans-
duction can improve learning. We speculate that the reason that these improvements

were not found using S*VM-IQP and SVM-Light is that the optimization problem



62

is very difficult and that the methods are failing to find the global minima. We
know from the prior experiments that there is very little room for improvement on
these specific learning tasks. Very few local minima will lead to better generaliza-
tion. S*VM-MIP and its local version are finding globally optimal solutions that
are better. From the results on SVM-Light reported in [60] we know that on larger
problems in text categorization, transductive inference using SVM-Light did lead
to significant improvements. So on different learning tasks S*VM-IQP may perform
better as well. We speculate that on problems where there are many local minima
that improve generalization, it is not as essential that the global minimum be found.
Further studies are needed to identify when methods that find good but not glob-
ally optimial solutions are sufficient. Note that nonlinear kernels also might result

in better generalization.

4.6 Conclusion

We examined mathematical models for semi-supervised support vector ma-
chines (S?VM). We proposed a general S°VM model that minimizes both the mis-
classification error and the function capacity based on all the available data. Three
different functions for penalizing unlabeled points falling in the margin were dis-
cussed. Our computational investigation focused on the minimum error formulation
for the transductive inference problem. We converted this problem to a mixed-
integer program that can be exactly solved using commercial integer programming
packages. By using the MIP formulation with a local learning algorithm, a powerful
scalable transductive inference method was created. Our computational experiments
found that the local learning method was the most effective overall. Further studies
are needed to determine how to best select neighborhoods and to choose the param-
eters within the local S*VM-MIP. In addition, very efficient computational methods
for the local S*VM-MIP are needed. One possibility is to use the estimated labels
and models for one point as a starting point for other points. We also examined
a noncovex quadratic optimization approach to S°VM. Our computational studies
were less conclusive using this approach. The best optimization approach for solving

this problem is still very much an open question.



63

Increasingly competitive markets, challenging scientific problems, and complex
decision processes require to use all available information on hand to enhance the
output of current models. In the last two chapters we proposed methods to introduce
new approaches for capacity control by solving semi-supervised learning problems.
These methods were implemented in the feature space. We will shift our focus in
the next chapter to propose capacity control techniques in the label space.

We proposed using unlabeled data as an extra information for current machine
learning methods. One can also use the output of several models to improve the
quality of the final output. Boosting [87] is a method for combining the output of
the several machine learning models. In the next chapter, we use column generation
technique from mathematical programming to boost decision stumps and decision

trees.



CHAPTER 5

A Column Generation Algorithm for Boosting

5.1 Introduction

Recent papers [87] have shown that boosting, arcing, and related ensemble
methods (hereafter summarized as boosting) can be viewed as margin maximization
in label space. By changing the cost function, different boosting methods such as
AdaBoost can be viewed as gradient descent to minimize this cost function [66].
Some authors have noted the possibility of choosing cost functions that can be
formulated as linear programs (LP) but then dismiss the approach as intractable
using standard LP algorithms [51, 81, 23|. In this chapter, we show that LP boosting
is computationally feasible using a classic column generation simplex algorithm [72].
This method performs tractable boosting using any cost function expressible as an
LP.

We specifically examine the variations of the 1-norm soft margin cost function
used for support vector machines [82, 4, 65] (See SVM-RLP problem 4.6 in Chapter
4). One advantage of these approaches is that immediately the method of analysis
for support vector machine problems becomes applicable to the boosting problem.
In Section 5.2, we summarize boosting briefly and explain the motivation behind
this study. We also review theoretical findings indicated in [10, 40]. In Section
5.3, we discuss the soft margin LP formulation adapted to boosting. By adopting
linear programming, we immediately have the tools of mathematical programming
at our disposal. By use of duality theory and optimality conditions, we can gain
insight into how LP boosting works mathematically. In Section 5.4, we examine
how column generation approaches for solving large scale LPs can be adapted to
boosting.

For classification, we examine both standard and confidence-rated boosting.
Standard boosting algorithms use weak learners (base learners, hypotheses) that
are classifiers (such as decision trees, neural networks etc.), that is, whose outputs

are in the set {—1,4+1}. Schapire and Singer [88] have considered boosting weak

64



65

learners whose outputs reflected not only a classification but also an associated
confidence encoded by a value in the range [~1,+1]. They demonstrate that so-
called confidence-rated boosting can speed convergence of the composite classifier,
though the accuracy in the long term was not found to be significantly affected.
In Section 5.5, we discuss the minor modifications needed for LPBoost to perform
confidence-rated boosting.

The methods we develop can be readily extended to any boosting problem
formulated as an LP. We demonstrate this by adapting the approach to regression
in Section 5.6. Computational results and practical issues for implementation of the

method are reported in Section 5.7.

5.2 Motivation for Soft Margin Boosting

As social beings, humans make decisions by asking friends their opinions. In
some cases, we might simply make a decision/judgement based on the majority
opinion. The same phenomenon is valid for democratic, civilized societies in general.
Public decisions are made by the majority vote. As ordinary citizens, our rights to
vote do not require sophisticated knowledge, advanced education etc.. Conventional
wisdom suggests that even though we are not in the position to make public decisions
as individuals, since it is representative of the concerned citizens, the majority vote
will be the right choice. Surprisingly, voting methods also perform well in supervised
learning cases. In voting methods, the idea is to construct several learning models
and classify objects based on the majority vote of the outputs from these models.

There have been many successful variations of voting methods. The most
famous one, the AdaBoost algorithm [87], is given below. r is the maximum number
of boosting rounds given to the algorithm. a; j = 1,...,r is the weight of the each
weak learner (classifier), h;, from the the class of functions, H. €; is the weighted

error rate in each boosting iteration.



66

Algorithm 5.2.1 (AdaBoost).

Given as input training set: S with n instances x and labels y
r < maz boosting rounds
a <+ 0 All coefficients are 0
H(S,u) Weak learner
U (%, o %) Ezample weights
forg=1.r
Find weak learner h; < 3{(S, u)
€5 4 D iih(wi)y; Wi Weighted error

ifej >1/2,r 4 j—1 break

a; < log lijej hypothesis weight
for each u;
if hj(xi) # yisui < uif (2¢€5)
else, u; —u;/(2(1 —€;))
end
end

return , f =Y., ajh;

The basic rationale behind AdaBoost is to increase the weight values of the
misclassified objects and to decrease the weight values of those classified correctly
in each iteration. Thus, the next weak learner attempts to perform well on the
misclassified objects. Although, this black-box method might look to be prone to
the overfitting problem in each iteration, strong experimental results have shown
that AdaBoost can generalize very well even when the number of boosting rounds
is increased. Breiman tried to explain this situation in the context of Bias-Variance
trade-off [22]. It was shown [87] that better generalization was due to the maxi-
mization of the margin distribution in label space (yf(x)).

Margin maximization in label space enables the determination of the general-
ization error boundaries of boosting approach by adapting similar boundaries from
support vector machines. Such error boundaries, dependent on the function class,

the size of the smallest cover for such function class, and the size of the training set



67

are given in [10, 40] (especially Theorem 2.2 of [40]). We give this theorem without
proof.

Theorem 5.2.1. Consider thresholding a real-valued function space F on the do-
main X . Fiz v € Rt and choose § C F x L(X). For any probability distribution D
on X x {—1,1}, with probability 1 — § over n random examples S, any hypothesis
f €F for which (f,gs) € G has generalization error no more than

9 9
errp(f) <e(n,F,6,v) = - (10g3\f(9,2n, %) + log 5) ,

where N(-) is the covering number and provided n > 2/e, and there is no discrete

probability on misclassified training points.

We are now in a position to apply these results to our function class which
will be in the form described above, F = co(H) = {}_, . anh : ay > 0}, where we
have left open for the time being what the class H of weak learners might contain.

The sets G of Theorem 5.2.1 will be chosen as follows:

gB - {(Zahhag> Zah+||g||1 S B7 Qp Z 0} .

heH heH

Hence, the condition that a function f =", ., ash satisfies the conditions of The-

orem 5.2.1 for G = Gp is simply

D ohen @+ x i E((xi,vi) £, )

. (5.1)
=Y henn+ 326G < B.

Note that this will be the quantity that we will minimize through the boosting
iterations described in later sections, where we will use the parameter C' in place
of 1/A and the margin v will be set to 1. Based on results from [40], we see
that optimizing B directly optimizes the relevant covering number bound and hence
the generalization bound given in Theorem 5.2.1 with G = Gz. Note that in the
cases considered, |G| is just the growth function, By(m), of the class, H of weak
learners. The central focus of this chapter is to optimize these error boundaries using

a column generation technique from mathematical programming. In the following



68

sections specific formulations based on linear programming are introduced.

5.3 Boosting LP for Classification

From the theoretical results shown in [10, 40], we can see that a soft margin
cost function should be valuable for boosting classification functions. Once again
using the techniques used in support vector machines, we can formulate this problem
as a linear program. The upper bound on generalization error defined in [40] can be
optimized directly using an LP. The LP is formulated as if all possible labelings of the
training data by the weak learners were known. The LP minimizes the 1-norm soft
margin cost function used in support vector machines with the added restrictions
that all the weights are positive and the threshold is assumed to be zero. This LP
and variants can be practically solved using a column generation approach. Weak
learners are generated as needed to produce the optimal support vector machine
based on the output of the all weak learners. In essence the base learner become
an ‘oracle’ that generates the necessary columns. The dual variables of the linear
program provide the misclassification costs needed by the learning machine. The
column generation procedure searches for the best possible misclassification costs in

dual space. Only at optimality is the actual ensemble of weak learners constructed.

5.3.1 LP Formulation

Let the matrix H be a n by » matrix of all the possible labelings of the training
data using functions from K. Specifically H;; = h;(x;) is the label (1 or — 1) given
by weak learner h; € } on the training point z;. Each column H ; of the matrix H
constitutes the output of weak learner h; j = 1,...,r on the training data, while
each row H; gives the outputs of all the weak learners on the example z; i =1,... ,n.
There may be up to 2" distinct weak learners.

The following linear program can be used to minimize upper bound on gener-



69

alization error (B) given in Eq.5.1:

minge > a4 +C30, &
5.1. yiHa+&§>1, §2>0,i=1,...,n (5.2)
a; >0, 1=1,...,r

where C' > 0 is the tradeoff parameter between misclassification error and margin

maximization. The dual of LP (5.2) is

max, Y., U
s.t. Z?:l UzylH” S 1, ] == 1, e, T (53)
0<u;<C,i=1,....n

Alternative soft margin LP formulations exist, such as this one for the v-LP Boost-

ing?. [81]:

maxge, p— D Z?:l &i

s.t. 2H2a+22 ,izl,...,n
! G (5.4)
Z::la’izla 52 20; Zzl, ,
Qg 20, j:1,... , T
The dual of this LP (5.4) is:
min, g [
s.1. Do wiyiHip < B, j=1,...r (5.5)

Srui=1, 0<wu; <D,i=1,...,n

These LP formulations are exactly equivalent given the appropriate choice of
the parameters C and D. Proofs of this fact can be found in [82, 10] so we only state

the theorem here.

Theorem 5.3.1 (LP Formulation Equivalence). If LP (5.4) with parameter D
has a primal solution (a,p > 0,€) and dual solution (u, ), then (@ = %,é = %:)

4We remove the constraint p > 0 since p > 0 at optimality under the complementation assump-
tion.



70

and (0 = %) are the primal and dual solutions of LP (5.2) with parameter C' = %.
Similarly, if LP 5.2 with parameter C has primal solution (a # 0, é) and dual solution
(4 #0), then (p = ﬁ,d =ap, & = éﬁ) and (B = ﬁ, u = 03) are the primal

and dual solutions of LP (5.4) with parameter D = C3.

Practically we found v-LP (5.4) with D = ﬁ, v € (0,1) preferable because of
the interpretability of the parameter. A more extensive discussion and development
of these characteristics for SVM classification can be found in [82]. To maintain
dual feasibility, the parameter v must maintain % <= D <= 1. By picking v
appropriately we can force the minimum number of support vectors. We know that
the number of support vectors will be the number of points misclassified plus the
points on the margin, and this was used as a heuristic for choice of v. The reader

should consult [81, 82] for a more in-depth analysis of this family of cost functions.

5.3.2 Properties of LP formulation

We now examine the characteristics of LP (5.4) and its optimality conditions to
gain insight into the properties of LP Boosting. This will be useful in understanding
both the effects of the choice of parameters in the model and the performance of the

eventual algorithm. The optimality conditions [72] of LP (5.4) are primal feasibility:

yszU"‘szPa izl,...,n
S jai=1, &>0,i=1,...,n (5.6)
(ljZO, i:1,...,r

dual feasibility:

Z?:l wyiHy; < B, j=1,...,r

(5.7)
Stiui=1, 0<u; <D, i=1,...,n

and complementarity here stated as equality of the primal and dual objectives:

p—DY &=5 (5.8)
i=1



71

Complementarity can be expressed using many equivalent formulations. For exam-

ple, from the complementarity property, the following equations hold:

n . (5.9)
a;(> i wyiHi; —B)=0,j=1,...r

As in SVM, the optimality conditions tell us many things. First we can char-
acterize the set of base learners that are positively weighted in the optimal ensemble.
Recall that the primal variables a; multiply each base learner. The dual LP assigns
misclassification costs u; to each point such that the u; sum to 1. The dual constraint
2?21 w;iyiH;; < B “scores” each weak learner h ;. The score is the weighted sum of
the correctly classified points minus the weighted sum of the incorrectly classified
points. The weak learners with lower scores have greater weighted misclassification
costs. The formulation is pessimistic in some sense. The set of best weak learners for
a given u will all have a score of 3. The dual objective minimizes 3 so the optimal
misclassification cost u will be the most pessimistic one, i.e., it minimizes the maxi-
mum score over all the weak learners. From the complementary slackness condition,
a;(O°"  wiyiH;j — ) =0, j=1,...,r, only the weak learners with scores equal to
(3 can have positive weights a; in the primal space. So the resulting ensemble will
be a linear combination of the weak learners that perform best under the most pes-
simistic choice of misclassification costs. This interpretation closely corresponds to
the game strategy approach of [23] (which is also a LP boosting formulation solvable
by LPBoost.) A notable difference is that LP (5.5) has an additional upper bound
on the misclassification costs u, 0 < u; < D, i =1,...,n, that is produced by the
introduction of the soft margin in the primal.

From SVM research, we know that both the primal and dual solutions will be
sparse and the degree of sparsity will be greatly influenced by the choice of parameter
D = ﬁ The size of the dual feasible region depends on our choice of v. If v is too
large, forcing D small, then the dual problem is infeasible. For large but still feasible
v (D very small but still feasible), the problem degrades to something very close to
the equal-cost case, u; = 1/n. All the u; are forced to be nonzero. Practically, this

means that as v increases, the optimal solution is frequently a single weak learner



72

that is best assuming equal costs. As v decreases (D grows), the misclassification
costs, u;, will increase for hard-to-classify points or points on the margin in the label
space and will go to 0 for points that are easy to classify. Thus the misclassification
costs u become sparser. If v is too small (and D too large) then the meaningless
null solution, a = 0, with all points classified as one class, becomes optimal.

For a good choice of v, a sparse solution for the primal ensemble weights a
will be optimal. This implies that few weak learners will be used. Also a sparse
dual u will be optimal. This means that the solution will be dependent only on a
smaller subset of data (the support vectors.) Data with u; = 0 are well-classified
with sufficient margin, so the performance on these data is not critical. From LP
sensitivity analysis, we know that the u; are exactly the sensitivity of the optimal
solution to small perturbations in the margin. In some sense the sparseness of u is
good because the weak learners can be constructed using only smaller subsets of the
data. But as we will see in Section 5.7, this sparseness of the misclassification costs

can lead to problems when practically implementing algorithms.

5.4 LPBoost Algorithms

We now examine practical algorithms for solving the LP (5.4). Since the
matrix H has a very large number of columns, prior authors have dismissed the
idea of solving LP formulations for boosting as being intractable using standard
LP techniques. But column generation techniques for solving such LPs have existed
since the 1950s and can be found in LP text books; see for example [72, Section 7.4].
Column generation is frequently used in large-scale integer and linear programming
algorithms so commercial codes such as CPLEX have been optimized to perform
column generation very efficiently [33]. The simplex method does not require that
the matrix H be explicitly available. At each iteration, only a subset of the columns
is used to determine the current solution (called a basic feasible solution). The
simplex method needs some means for determining if the current solution is optimal,
and if it is not, some means for generating some column that violates the optimality
conditions. The tasks of verification of optimality and generating a column can

be performed by the learning algorithm. A simplex-based boosting method will



73

alternate between solving an LP for a reduced matrix H corresponding to the weak
learners generated so far and using the weak learning algorithm to generate the
best-scoring weak learner based on the dual misclassification cost provided by the
LP. This will continue until a well-defined exact or approximate stopping criterion
is reached.

The idea of column generation (CG) is to restrict the primal problem (5.2)
by considering only a subset of all the possible labelings based on the weak learn-
ers generated so far; i.e., only a subset H of the columns of H is used. The LP
solved using H is typically referred to as the restricted master problem. Solving
the restricted primal LP corresponds to solving a relaxation of the dual LP. The
constraints for weak learners that have not been generated yet are missing. One
extreme case is when no weak learners are considered. In this case the optimal dual
solution is u; = % (with appropriate choice of D). This will provide the initialization
of the algorithm.

If we consider the unused columns to have a; = 0, then a is feasible for the
original primal LP. If (1, B) is feasible for the original dual problem then we are
done since we have primal and dual feasibility with equal objectives. If a is not
optimal then (4, () is infeasible for the dual LP with full matrix H. Specifically, the
constraint 2?21 iy Hi; < B is violated for at least one weak learner. Or equivalently,
Yo uyHi > A for some j. Of course we do not want to a priori generate all
columns of H (H ;), so we use our weak learner as an oracle that either produces
Hj, >"  uy;Hij > B for some j, or a guarantee that no such H ; exists. To speed
convergence we would like to find the one with maximum deviation, that is, the

weak learning algorithm (S, u) must deliver a function h satisfying

n

i=1 helt =1

Thus 4; becomes the new misclassification cost, for example 7, that is given to the
weak learning machine to guide the choice of the next weak learner. One of the big
payoffs of the approach is that we have a stopping criterion. If there is no weak

learner h for which Y°F | 4,y;h(x;) > 3, then the current combined hypothesis is the



74

optimal solution over all linear combinations of weak learners.

We can also gauge the cost of early stopping since if maxpeqe Yo, @yih(z;)) <
B—i— e, for some € > 0, we can obtain a feasible solution of the full dual problem
by taking (ﬂ,@ + ¢). Hence, the value V of the optimal solution can be bounded
between B <V B + €. This implies that, even if we were to potentially include a
non-zero coefficient for all the weak learners, the value of the objective p—D > &
can only be increased by at most e.

We assume the existence of the weak learning algorithm H(S, u) which selects
the best weak learner from a set H closed under complementation using the criterion

of equation (5.10). The following algorithm results



7

Algorithm 5.4.1 (LPBoost).

Given as input training set: S
r <0 No weak learners
a < 0 All coefficients are 0
B+ 0
U (%, o %) Corresponding optimal dual
REPEAT
r<r-+1
Find weak learner using equation (5.10) :
hy < H(S, u)
Check for optimal solution:
IfY0  wiyihe(x;) < B, <= r — 1, break
Hiy < hy(%;)

Solve restricted master for new costs:

argmin 3
(u. B) ¢ s.t. Yo uyihi(z) < B
j=1,...,r
0<u;<D,i=1,....n
END

a < Lagrangian multipliers from last LP

return v, f = 25:1 a;h;

Note that the assumption of finding the best weak learner is not essential for
good performance on the algorithm. Recall that the role of the learning algorithm
is to generate columns (weak learners) corresponding to a dual infeasible row or
to indicate optimality by showing no infeasible weak learners exist. All that we
require is that the base learner return a column corresponding to a dual infeasible
row. It need not be the one with maximum infeasibility. This is merely done to
improve convergence speed. In fact, choosing columns using “steepest edge” criteria
that look for the column that leads to the biggest actual change in the objective

may lead to even faster convergence. If the learning algorithm fails to find a dual



76

infeasible weak learner when one exists than the algorithm may prematurely stop
at a nonoptimal solution.

With small changes this algorithm can be adapted to perform any of the LP
boosting formulations by simply changing the restricted master LLP solved, the costs
given to the learning algorithm, and the optimality conditions checked. Assuming
the base learner solves (5.10) exactly, LPBoost is a variant of the dual simplex
algorithm [72]. Thus it inherits all the benefits of the simplex algorithm. Benefits

include:

1. Well-defined exact and approximate stopping criteria. Typically, ad hoc ter-
mination schemes, e.g. a fixed number of iterations, must be used for the

gradient-based boosting algorithms.

2. Finite termination at a globally optimal solution. In practice the algorithm

generates few weak learners to arrive at an optimal solution.
3. The optimal solution is sparse and thus uses few weak learners.

4. The algorithm is performed in the dual space of the classification costs. The

weights of the optimal ensemble are only generated and fixed at optimality.

5. High-performance commercial LP algorithms optimized for column generation
exist that do not suffer from the numeric instability problems reported for

boosting [2].

5.5 Confidence-rated Boosting

The derivations and algorithm of the last two sections did not rely on the
assumption that H;; € {—1,4+1}. We can therefore apply the same reasoning to
implementing a weak learning algorithm for a finite set of confidence-rated func-
tions F whose outputs are real numbers. We again assume that F is closed under
complementation. We simply define H;; = f;(x;) for each f; € F and apply the

same algorithm as before. We again assume the existence of a weak learner F'(S, u),



77

which finds a function f € F satisfying
D> vif (xi)is = max iy f (a:) (5.11)
i=1 i=1

The only difference in the associated algorithm is the weak learner which now opti-

mizes this equation.

Algorithm 5.5.1 (LPBoost-CRB).

Given as input training set: S
r < 0 No weak learners
a <+ 0 All coefficients are O
B0
U — (%, cee %) Corresponding optimal dual
REPEAT
r<r—+1
Find weak learner using equation (5.11) :
fr < F(S,u)
Check for optimal solution:
TF>ST uifibe(x:) < Byr <=1 — 1, break
H;  fr(x;)

Solve restricted master for new costs:

argmin 3
s.t. T-l_ U;Y; [\ <
j=1,...,r
0<u;<D,1=1,...,n
END

a < Lagrangian multipliers from last LP

return T, f =0, a;f;

5.6 LPBoost for Regression

The LPBoost algorithm can be extended to optimize any ensemble cost func-

tion that can be formulated as a linear program. To solve alternate formulations



78

we need only change the LP restricted master problem solved at each iteration and
the criteria given to the base learner. The only assumptions in the current ap-
proach are that the number of weak learners be finite and that if an improving weak
learner exists then the base learner can generate it. To see a simple example of this
consider the problem of boosting regression functions. We use the following adap-
tation of the SVM regression formulations. This LP was also adapted to boosting
using a barrier algorithm in [80]. We assume we are given a training set of data

S = ((x1,%1)s--- (Xn,¥n)), but now y; may take on any real value.

mingee- . Crve+nd._a;,+CY " (&+E)

s.t. Hia —y; — & <e, i>0,1=1,...,n
b=t : (5.12)
Hla_y’t—i_gz*z_ea 5:2072217777'
a; >0, 1=1,...,r
First we reformulate the problem slightly differently:
mingee- . Crve+nd._a;+CY " (&+E)
s.t. G—Hia—FiZ—i, 22072217777'
G2y : (5.13)
€+Hla‘+€1*2yza fz*ZOaZ:La”
a; >0, 1=1,...,r

We introduce Lagrangian multipliers (u, u*), construct the dual, and convert

to a minimization problem to yield:

miny - Z?:l yi(ui — u)

s.t. Z?Zl(—ui +uf)H;; <m, j=1,...,r
> i (g +uf) =1
0<u,<C, 0<u;<C,i=1,...,n

(5.14)

LP (5.14) restricted to all weak learners constructed so far becomes the new
master problem. If the base learner returns any hypothesis H ; that is not dual
feasible, i.e. (3, ,(—u; + u})H;; > n), then the ensemble is not optimal and the

weak learner should be added to the ensemble. To speed convergence we would like



79

the weak learner with maximum deviation, i.e.,

n
mazx; Z(—ul +u;)H;j. (5.15)
i=1

This is perhaps odd at first glance because the criteria do not actually ex-
plicitly involve the dependent variables y;. But within the LPBoost algorithm, the
u; are closely related to the error residuals of the current ensemble. If the data
point x; is overestimated by the current ensemble function by more than ¢, then
by complementarity u; will be positive and u; = 0. So at the next iteration the
weak learner will attempt to construct a function that has a negative sign at point
x;. If the point z; falls within the e margin then the u; = u; = 0, and the next
weak learner will try to construct a function with value 0 at that point. If the data
point x; is underestimated by the current ensemble function by more than e, then by
complementarity u; will be positive and u; = 0. So at the next iteration the weak
learner will attempt to construct a function that has a positive sign at point z;. By
sensitivity analysis, the magnitudes of v and u* are proportional to the changes of

the objective with respect to changes in the margin.
This becomes even clearer using the approach taken in the Barrier Boosting
algorithm for this problem [80]. Equation (5.15) can be converted to a least squares

problem. For v; = —u; +u} and H;; = f;(x;),

(f(ms) —v3)? = fl:)” = 20 f (3;) + v} (5.16)

So the objective to be optimized by the weak learner can be transformed as follows:

mazx, Z(—uz +u) fi(z;) = maxz; Z v fi () (5.17)
= Srming Y [fi() — 0~ i) 7]

The constant term v? can be ignored. So effectively the weak learner must construct
a regularized least squares approximation of the residual function.

The final regression algorithm looks very much like the classification case. The



80

variables u; and u} can be initialized to any initial feasible point. We present one
such strategy here assuming that D is sufficiently large. Here (a); := max(a,0)

denotes the plus function.

Algorithm 5.6.1 (LPBoost-Regression).

Given as input training set: S
r < 0 No weak learners

a <+ 0 All coefficients are 0

u; (N;""‘)f Corresponding feasible dual

ut (Wi)+
i Tyl

REPEAT

r<r+1
Find weak learner using equation (5.17):
hy < H(S, (—u +u*))
Check for optimal solution:
TFSE (—ui +ul)he(z;) < n,r<—r—1,break
H;, < h.(z;)
Solve restricted master for new costs:
argmin. 37" (ui — u;)y;
s.t. > i (=us + ui)hy(wi) <1
(u, u”) j=1,...,r
> (ui+uf) =1
0<u,u; <C,i=1,....n
END
a < Lagrangian multipliers from last LP

return r, f = 25:1 ajh;

5.7 Computational Experiments
We performed three sets of experiments to compare the performance of LP-
Boost, CRB, and AdaBoost on three classification tasks: one boosting decision tree

stumps on smaller datasets and two boosting C4.5 [79]. For decision tree stumps



81

Table 5.1: Average Accuracy and Standard Deviations of Boosting using
Decision Tree Stumps (r) = number of stumps in final ensemble

Dataset LPBoost (r) AB-100 AB-1000

Cancer 0.9657 £+ 0.0245 (14.7)  0.9542 4+ 0.0292 0.9471 + 0.0261
Diagnostic  0.9613 + 0.0272 (54.2)  0.9684 £+ 0.0273 0.9701 + 0.0311
Heart 0.7946 + 0.0786 (70.8)  0.8182 + 0.0753 0.8014 + 0.0610
Tonosphere  0.9060 + 0.0523 (87.6)  0.9060 + 0.0541 0.9031 + 0.0432
Musk 0.8824 + 0.0347 (205.3) 0.8403 + 0.0415 0.8908 + 0.0326
Sonar 0.8702 + 0.0817 (85.7)  0.8077 4+ 0.0844 0.8558 + 0.0781

six datasets were used. For the C4.5 experiments, we report results for four large
datasets with and without noise. Finally, to further validate C4.5, we experimented
with ten more additional datasets. The rationale was to first evaluate LPBoost
where the base learner solves (5.10) exactly, then to examine LPBoost in a more re-
alistic environment by using C4.5 as a base learner. All of the datasets were obtained
from the UC-Irvine data repository [68]. For the C4.5 experiments we performed

both traditional and confidence- rated boosting.

5.7.1 Boosting Decision Tree Stumps

We used decision tree stumps as a base learner on the following six datasets:
Cancer (9,699), Diagnostic (30,569), Heart (13,297), Ionosphere (34,351), Musk
(166,476), and Sonar (60,208). The number of features and number of points in
each dataset are shown, respectively, in parentheses. We report testing set accuracy
for each dataset based on 10-fold Cross Validation (CV). We generate the decision
tree stumps based on the mid-point between two consecutive points for a given vari-
able. Since there is limited confidence information in stumps, we did not perform
confidence-rated boosting. All boosting methods search for the best weak learner
which returns the least weighted misclassification error at each iteration. LPBoost
can take advantage of the fact that each weak learner need only be added into the
ensemble once. Thus once a stump is added to the ensemble it is never evaluated
by the learning algorithm again. The weights of the weak learners are adjusted dy-
namically by the LP. This is an advantage over AdaBoost, since AdaBoost adjusts



82

prior weights by repeatedly adding the same weak learner into the ensemble.

The parameter v for LPBoost was set using a simple heuristic: 0.1 added to
previously-reported error rates on each dataset in [9] except for the Cancer dataset.
Specifically the values of v in the same order of the datasets given above were (0.2,
0.1, 0.25, 0.2, 0.25, 0.3 ). Results for AdaBoost were reported for a maximum
number of iterations of 100 and 1000. The 10-fold average classification accuracies
and standard deviations are reported in Table 5.1.

LPBoost performed very well both in terms of classification accuracy, number
of weak learners, and training time. There is little difference between the accuracy
of LPBoost and the best accuracy reported for AdaBoost using either 100 or 1000
iterations. The variation in AdaBoost for 100 and 1000 iterations illustrates the
importance of well-defined stopping criteria. Typically, AdaBoost only obtains its
solution in the limit and thus stops when the maximum number of iterations (or
some other heuristic stopping criteria) is reached. There is no magic number of
iterations good for all datasets. LPBoost has a well-defined stopping criterion that
is reached in a few iterations. It uses few weak learners. There are only 81 possible
stumps on the Breast Cancer dataset (nine attributes having nine possible values),
so clearly AdaBoost may require the same tree to be generated multiple times.
LPBoost generates a weak learner only once and can alter the weight on that weak
learner at any iteration. The run time of LPBoost is proportional to the number
of weak learners generated. Since the LP package that we used, CPLEX 4.0 [33],
is optimized for column generation, the cost of adding a column and reoptimizing
the LP at each iteration is small. An iteration of LPBoost is only slightly more
expensive that an iteration of AdaBoost. The time is proportional to the number of
weak learners generated. For problems in which LPBoost generates far fewer weak
learners it is much less computationally costly.

In the next subsection, we test the practicality of our methodology on different

datasets using C4.5.



83

5.7.2 Boosting C4.5

LPBoost with C4.5 as the base algorithm performed well after some opera-
tional challenges were solved. In concept, boosting using C4.5 is straightforward
since the C4.5 algorithm accepts misclassification costs. One problem is that C4.5
only finds a good solution not guaranteed to maximize (5.10). This can effect the
convergence speed of the algorithm and may cause the algorithm to terminate at
a suboptimal solution. Another challenge is that the misclassification costs deter-
mined by LPBoost are sparse, i.e. u; = 0 for many of the points. The dual LP
has a basic feasible solution corresponding to a vertex of the dual feasible region.
Only the variables corresponding to the basic solution can be nonnegative. So while
a face of the region corresponding to many nonnegative weights may be optimal,
only a vertex solution will be chosen. In practice we found that when many w; = 0,
LPBoost converged slowly. In the limited number of iterations that we allowed (25),
LPBoost frequently failed to find weak learners that improved significantly over the
initial equal cost solution. The weak learners generated using only subsets of the
variables were not necessarily good over the full data set. Thus the search was too
slow. Alternative optimization algorithms may alleviate this problem. For example,
an interior point strategy may lead to significant performance improvements. Note
that other authors have reported problems with underflow of boosting [2]. When
LLPBoost was solved to optimality on decision tree stumps with full evaluation of
the weak learners, this problem did not occur. Boosting unpruned decision trees
helped somewhat but did not completely eliminate this problem.

Stability and convergence speed was greatly improved by adding minimum

misclassification costs to the dual LP (5.5) :

min, [
st Yl uyHy <pB,j=1,....r

Z?:l u; =1

D'<u;<D,i=1,...,n

(5.18)



84

where D = ﬁ and D' = 2511"1. The corresponding primal problem is

maxXe, p+D'Y>70 i~ DY &

s.t. yiHao+ &> p+m, i=1,....,n
Yo jai=1,,a;>0,i=1,...,r
>0, 1=1,...,n

(5.19)

The primal problem maximizes two measures of soft margin: p corresponds to the
minimum margin obtained by all points and 7; measures the additional margin
obtained by each point. AdaBoost also minimizes a margin cost function based on
the margin obtained by each point.

We ran experiments on larger datasets: Forest, Adult, USPS, and Optdig-
its from UCI[68]. LPBoost was adopted to the multiclass problem by defining
h;(z;) = 1 if instance x; is correctly classified by weak learner h; and -1 other-
wise. This is just one method of boosting multiclass problems. Further investigation
of multiclass approaches is needed. Forest is a 54-dimension dataset with seven pos-
sible classes. The data are divided into 11340 training, 3780 validation, and 565892
testing instances. There are no missing values. The 15-dimensional Adult dataset
has 32562 training and 16283 testing instances. One training point that has a miss-
ing value for a class label has been removed. We use 8140 instances as our training
set and the remaining 24421 instances as the validation set. Adult is a two-class
dataset with missing values. The default handling in C4.5 has been used for missing
values. USPS and Optdigits are optical character recognition datasets. USPS has
256 dimensions without missing value. Out of 7291 original training points, we use
1822 points as training data and the rest 5469 as validation data. There are 2007
test points. Optdigits on the other hand has 64 dimensions without missing values.
Its original training set has 3823 points. We use 955 of them as training data and the
remaining 2868 as validation data. Parameter selection for both LPBoost and Ad-
aBoost was done based on validation set results. Since initial experiments resulted
in the same parameter set for both LPBoost and CRB, we set the parameters equal
for CRB and LPBoost to expedite computational work. In order to investigate the

performance of boosted C4.5 with noisy data, we introduced 15% label noise for all



85

(a) Forest Dataset (b) Adult Dataset

(c) USPS Dataset (d) Optdigits Dataset

Figure 5.1: Validation Set Accuracy by v Value. Triangles are no noise
and circles are with noise.

four datasets.

The v parameter used in LPBoost and the number of iterations of AdaBoost
can significantly affect their performance. Thus accuracy on the validation set was
used to pick the parameter v for LPBoost and the number of iterations for AdaBoost.
To avoid excessive computation, we limit the maximum number of iterations at 25
for all boosting methods as in [2]. We varied parameter v between 0.03 and 0.11.
Initial experiments indicated that for very small v values, LPBoost results in one
classifier which assigns all training points to one class. On the other extreme, for
larger values of v, LPBoost returns one classifier which is equal to the one found
in the first iteration. Figure 5.1 shows the validation set accuracy for LPBoost on
all four datasets. Based on validation set results, we use (22,19), (25,4), (22,25),
and (25,25) number of iterations for original and 15% noisy data respectively for

AdaBoost in the Forest, Adult, USPS, and Optdigits datasets.



86

Table 5.2: Large Dataset Results from Boosting C4.5

Dataset LPBoost CRB AdaBoost C4.5

Original Forest 0.7226 0.7259 0.7370 0.6638
+ 15% Noise 0.6602 0.6569 0.6763 0.5927
Original Adult 0.8476  0.8461 0.8358 0.8289
+ 15% Noise 0.8032 0.8219 0.7630 0.7630
Original USPS 0.9123 0.9103 0.9103 0.7833
+ 15% Noise 0.8744 0.8739 0.8789 0.6846
Original OptDigits 0.9249 0.9355 0.9416 0.7958
+ 15% Noise 0.8948 0.8948 (.8770 0.6884

The testing set results using the value of v with the best validation set accuracy
are given in Table 5.2. LPBoost was very comparable with AdaBoost in terms of
CPU time. Asseen in Table 5.2, LPBoost is also comparable with AdaBoost in terms
of classification accuracy when the validation set is used to pick the best parameter
settings. All boosting methods outperform C4.5. In general, AdaBoost had the best
performance with narrow margins. LPBoost and CRB performed comparable with
AdaBoost.

The computational costs of 25 iterations of LPBoost (either variant) and Ad-
aBoost were very similar. We provide some sample CPU times. These timings
should be considered only rough estimates. Our experiments were performed on a
cluster of IBM RS-6000s used in batch mode. Since the machines are not all iden-
tical and are subject to varying loads, run times vary considerable from run to run.
For each dataset we give the seconds of CPU time on an RS-6000: Forest AdaBoost
=717, LPBoost = 930; Adult AdaBoost = 107, LPBoost = 89; USPS AdaBoost =
208, LPBoost = 177; and Optdigits AdaBoost = 21, LPBoost = 24.

We also conducted experiments by boosting C4.5 on small datasets. Once
again there was no strong evidence of superiority of any of the boosting approaches.
In addition to six UCI datasets used in decision tree stumps experiments, we use
four additional UCT datasets here. These are the House(16,435), Housing(13,506)°,
Pima(8,768), and Spam(57,4601) datasets. As in the decision tree stumps experi-

5The continuous response variable of Housing dataset was categorized at 21.5.



87

Table 5.3: Small Dataset Results from Boosting C4.5

Dataset LPBoost CRB AdaBoost C4.5

Cancer 0.9585 + 0.0171 0.9628 + 0.0245 0.9662 + 0.0254 0.9447 + 0.0248
Diagnostic  0.9649 + 0.0263 0.9631 4+ 0.0280 0.9705 + 0.0186 0.9370 4+ 0.0364
Heart 0.7913 + 0.0624 0.7946 4 0.0996 0.7867 &+ 0.0614 0.7880 =+ 0.0767
House 0.9586 + 0.0339 0.9447 4+ 0.0525 0.9511 4 0.0417 0.9618 £ 0.0289
Housing 0.8538 + 0.0476 0.8656 + 0.0378 0.8785 + 0.0393 0.8173 £ 0.0486
Ionosphere 0.9373 + 0.0375 0.9259 4+ 0.0604 0.9355 + 0.0406 0.9158 4+ 0.0520
Musk 0.8824 + 0.0543 0.9055 £+ 0.0490 0.9293 + 0.0284 0.8344 + 0.0340
Pima 0.7500 & 0.0499 0.7279 4 0.0483 0.7478 4+ 0.0707 0.7286 £ 0.0455
Sonar 0.8173 + 0.0827 0.8317 4 0.0827 0.8140 £ 0.0928 0.7011 £ 0.0727
Spam 0.9557 + 0.0086 0.9550 4 0.0098 0.9518 £ 0.0092 0.9296 + 0.0087

ments, we report results from 10-fold CV. Since the best v value for LPBoost varies
between 0.05 and 0.1 for the large datasets, we pick parameter v = 0.07 for the small
datasets. Results are reported in Table 5.3. C4.5 performed the best on the House
dataset. AdaBoost performed the best in four datasets out of ten. LPBoost and
CRB had the best classification performance for three and two datasets respectively.
When we drop CRB in Table 5.3, LPBoost would in this case perform the best in

five datasets, although the parameter v has not been tuned.

5.8 Discussion and Extensions

We have shown that LP formulations of boosting are both attractive theo-
retically in terms of generalization error bound and computationally via column
generation. The LPBoost algorithm can be applied to any boosting problem for-
mulated as an LP. We examined algorithms based on the 1-norm soft margin cost
functions for support vector machines. A generalization error bound was found
for the classification case. The LP optimality conditions allowed us to provide ex-
planations for how the methods work. In classification, the dual variables act as
misclassification costs. The optimal ensemble consists of a linear combination of

weak learners that work best under the worst possible choice of misclassification

costs. This explanation is closely related to that of [23]. For regression as discussed



88

in the Barrier Boosting approach to a similar formulation [80], the dual multipli-
ers act like error residuals to be used in a regularized least square problem. We
demonstrated the ease of adaptation to other boosting problems by examining the
confidence-rated and regression cases. Extensive computational experiments found
that the method performed well versus AdaBoost both with respect to classification
quality and solution time. Experimental results have shown that boosting of C4.5
decision trees improved the testing accuracy. From an optimization perspective,
LPBoost has many benefits over gradient-based approaches: finite termination, nu-
merical stability, well-defined convergence criteria, fast algorithms in practice, and
fewer weak learners in the optimal ensemble. LLPBoost may be more sensitive to
inexactness of the base learning algorithm. But through modification of the base
LP, we were able to obtain very good performance over a wide spectrum of datasets
even in the boosting decision trees where the assumptions of the learning algorithm
were violated. The questions of what is the best LP formulation for boosting and
the best method for optimizing the LP remain open. Interior point column gen-
eration algorithms may be much more efficient. But clearly LP formulations for
classification and regression are tractable using column generation, and should be

the subject of further research.



CHAPTER 6

Conclusion

Turkish mustaches, or lack thereof, bristle with meaning.... Mustaches
signal the difference between leftist (bushy) and rightist (drooping to the
chin), between Sunni Muslim (clipped) and Alevi Muslim (curling to the
mouth).

Wall Street Journal, May 15, 1997

Rules of thumb can help to enhance our lives. We probably learn these rules of
thumb through the course of experience. Good rules could be regarded as “proverbs”
or “rules to liveby”. We might also have so called “stereotypes” about people or
places. What makes someone a wise person is simply that how she/he can generalize
well to solve the present difficulties faced using past experiences. What degrades a
person’s character is his/her willingness to accept stereotypes. It could be true that
wise people have good rules in their lives to solve problems and to live in peace. In
any case, we should listen to our conscience but not the stereotypes.

Stereotypes are analogous to poor generalization ability of the machine learn-
ing models. We proposed several innovative techniques in this research to improve
the generalization ability of the machine learning models based on capacity control
by using all the available information available. Our methods span a variety of
learning methods: supervised, unsupervised and semi-supervised learning. As we
indicated above, how well we deal with the new problems based on our experiences
improves our lives. If we solve problems easily and in a proper way, it means that
we have learned well from our experiences. Our aim was to develop measures and
methods to provide the same confidence in machine learning techniques as well.

In Chapter 3, a novel method for semi-supervised learning that combines as-
pects of supervised and unsupervised learning techniques was introduced. The cen-
tral focus was to take an unsupervised clustering method, label each cluster with
the class membership, and simultaneously optimize the misclassification error of the

resulting clusters. A linear combination of both cluster dispersion and cluster (class)

89



90

impurity measures formed the objective function of learning process. The rationale
behind this approach was that to avoid overfitting, the unsupervised component of
the objective function acts as a form of regularization or capacity control during
supervised learning.

The method allows the user to exploit any available unlabeled data during
training since the cluster dispersion measure does not require class labels. There-
fore, this approach can easily be adapted to transductive inference, the process of
constructing a classifier using both the labeled training data and the unlabeled test
data. We used two different measures for unsupervised information (cluster disper-
sion): Mean Square Error (MSE) and Davies-Bouldin Index (DBI). Experimental
results show that using DBI for cluster dispersion instead of MSE improves trans-
ductive inference. Minimizing DBI results in compact and well separated clusters.
DBI finds solutions using far fewer clusters than MSE with much greater accuracy.

There are two types of research contributions in Chapter 3. These contri-
butions are in terms of both application of genetic algorithms and learning meth-
ods. Although floating-point genome representation had been around before, it was
the first time such representation was used to solve clustering problems in genetic
algorithms. We proposed a semi-supervised clustering method that used genetic
algorithms. The parametric objective function allowed us to solve supervised, un-
supervised and semi-supervised learning problems within the same model. The idea
incorporating classification information into an unsupervised algorithm and using
the resulting algorithm for transductive inference methods is applicable to many
types of unsupervised learning. These are also promising areas of future research.

The semi-supervised clustering method discussed in Chapter 3 can also be gen-
eralized to regression problems. Since each cluster defines a neighborhood, we can
predict the continuous variable within that neighborhood. Moreover, we can pre-
dict the continuous variable in the local neighborhoods. One could also implement
scaling for variable selection in the semi-supervised framework. For each variable, a
gene must be introduced to represent the scaling factor. Scaling can be either im-
plemented within the same genome or can be used with another genome for scaling

factors within the GA.



91

We examined mathematical models for semi-supervised support vector ma-
chines (S*VM) in Chapter 4. We proposed a general S*VM model that minimizes
both the misclassification error and the function capacity based on all the available
data. Three different functions for penalizing unlabeled points that fall in the mar-
gin were discussed. Our computational investigation focused on the minimum error
formulation for the transductive inference problem. We converted this problem to
a mixed-integer program that can be exactly solved using commercial integer pro-
gramming packages. We proposed semi-supervised models both in the primal and
dual spaces. We also implemented the primal model in the local neighborhoods.
By using the MIP formulation with a local learning algorithm, a powerful scalable
transductive inference method was created. Our computational experiments found
that the local learning method was the most effective overall.

Since local methods performed well, further studies are needed to determine
how best to select neighborhoods and to choose the parameters within the local
S*VM-MIP. In addition, efficient computational methods for defining locality are
left for future work. Currently, for each point a local model is built. The result
for the points other than query point are discarded. We might, as well, keep those
results for future predictions. We also examined a noncovex quadratic optimization
approach to S*VM. Our computational studies were less conclusive using this ap-
proach. Quadratic transductive models are extremely slow. Better formulations are
within the scope of the future work.

The methods in Chapters 3 and 4 were implemented in the feature space. In
Chapter 5, we proposed a soft margin classifier (LPBoost) in the label space to solve
the boosting problem. We have shown that LP formulations of boosting are attrac-
tive both theoretically (in terms of generalization error bound) and computationally
(via column generation). The LPBoost algorithm can be applied to any boosting
problem formulated as an LP. We examined algorithms based on the 1-norm soft
margin cost functions for support vector machines. The LP optimality conditions
allowed us to provide explanations for how the methods work. In classification, the
dual variables act as misclassification costs. The optimal ensemble consists of a

linear combination of weak learners that work best under the worst possible choice



92

of misclassification costs.

We demonstrated the ease of adaptation to other boosting problems by ex-
amining the confidence-rated and regression cases. Extensive computational experi-
ments found that the method performed well versus AdaBoost both with respect to
classification quality and solution time. From an optimization perspective, LPBoost

has many benefits over gradient-based approaches:

e Finite termination

Numerical stability

Well-defined convergence criteria

Fast algorithms in practice

Fewer weak learners in the optimal ensemble

LPBoost may be more sensitive to inexactness of the base learning algorithm.
However, through modification of the base LP, we were able to obtain very good
performance over a wide spectrum of datasets even in the boosting decision trees
where the assumptions of the learning algorithm were violated. The questions of
what is the best LP formulation for boosting and the best method for optimizing
the LP remain open. Adapting efficient optimization methods for column generation
algorithms such as interior point methods could be further investigated.

Research in support vector regression models is very active. Successful models
such as the e-Tuning model [92] exist to solve regression problems. The LP formula-
tion of regression problems can also be solved by column generation techniques. In
addition, for boosting regression as discussed in the Barrier Boosting approach to a
similar formulation [80], the dual multipliers act like error residuals to be used in a
regularized least square problem. However, clearly LP formulations for classification
and regression are tractable using column generation, and should be the subject of

further research.



1]

2]

LITERATURE CITED

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11:11 73, 1997.

E. Bauer and R. Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36:105 139,
1999.

K. P. Bennett. Global tree optimizaiton:a non-greedy decision tree

algorithm. Computing Science and Statistics, 26:156 160, 1994.

K. P. Bennett. Combining support vector and mathematical programming
methods for classification. In B. Scholkopf, C. Burges, and A. Smola, editors,
Advances in Kernel Methods — Support Vector Machines, pages 307-326,
Cambridge, MA, 1999. MIT Press.

K. P. Bennett. Kernel principal component analysis. In B. Scholkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods — Support
Vector Machines, pages 327 352, Cambridge, MA, 1999. MIT Press.

K. P. Bennett and J. A. Blue. Optimal decision trees. Technical Report
R.P.I. Math Report No.214, Rennselaer Polytechnic Institute, Troy, NY,
1996.

K. P. Bennett and J.A. Blue. A support vector machine approach to decision
trees. Technical Report R.P.I. Math Report No. 97-100, Rensselaer
Polytechnic Institute, Troy, NY, 1997.

K. P. Bennett and E. J. Bredensteiner. Geometry in learning. In C. Gorini,
E. Hart, W. Meyer, and T. Phillips, editors, Geometry at Work, pages

132 145, Washington, D.C., 2000. Mathematical Association of America.
Available also at http : //www.rpi.edu/ ~ bennek/geometry2.ps.

93



9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

94

K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In
D. Cohn M. Kearns, S. Solla, editor, Advances in Neural Information
Processing Systems 11, pages 368 374, Cambridge, MA, 1999. MIT Press.

K. P. Bennett, A. Demiriz, and John Shawe-Taylor. A column generation
approach to boosting. In Proceedings of International Conference on

Machine Learning, Stanford, California, 2000. To appear.

K. P. Bennett and O. L. Mangasarian. Robust linear programming

discrimination of two linearly inseparable sets. Optimization Methods and

Software, 1:23-34, 1992.

K. P. Bennett and O. L. Mangasarian. Bilinear separation in n-space.

Computational Optimization and Applications, 4(4):207-227, 1993.

A.M. Bensaid, L.O. Hall, J.C. Bezdek, and L.P. Clarke. Partially supervised
clustering for image segmentation. Pattern Recognition, 29(5):859-871, 1996.

D. P. Berstsekas. Nonlinear Programming. Aethena Scientific, Cambridge,

MA, 1996.

J.C. Bezdek. Classification of posture maintenance data with fuzzy clustering

algorithms final report. Technical Report NASA CR-~189940, NASA, 1992.

J.C. Bezdek, T.R. Reichherzer, G.S. Lim, and Y. Attikiouzel. Multiple
prototype classifier design. IEEE Transactions on Systems, Man, and
Cybernetics, 28(1):67 79, 1998.

J. Blue. A hybrid of tabu search and local descent algorithms with
applications in artificial intelligence. PhD thesis, Rensselaer Polytechnic

Institute, Troy, NY, 1998.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the 1998 Conference on Computational

Learning Theory, Madison WI, 1998. ACM Inc.



95

[19] B. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In Fifth Annual Workshop on Computational Learning

Theory, pages 144 152, Pittsburgh, 1992. ACM.

[20] L. Bottou. About direct regression and density estimation. Presentation at

Learning Workshop, Snowbird, Utah, April 6-9, 1999.

21] E. J. Bredensteiner and K. P. Bennett. Feature minimization within decision

trees. Computational Optimization and Applications, 10:110 126, 1997.

[22] L. Breiman. Arcing the edge. Technical Report 486, Statistics Department,
University of California at Berkeley, 1997.

(23] L. Breiman. Prediction games and arcing algorithms. Neural Computation,

11(7):1493 1517, 1999.

[24] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and

Regression Trees. Wadsworth International, California, 1984.

[25] J. Buhmann. Stochastic algorithms for exploratory data analysis: Data
clustering and data visualization. In M. Jordan, editor, Learning in

Graphical Models. Kluwer Academics, 1997.

[26] C.J.C. Burges and B. Schélkopf. Improving the accuracy and speed of
support vector machines. In M. Mozer, M. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems (NIPS) 9, Cambridge,
MA, 1997. MIT Press.

[27] V. Castelli and T. M. Cover. On the exponential value of labeled samples.
Pattern Recognition Letters, 16:105-111, 1995.

(28] Z. Cataltepe and M. Magdon-Ismail. Incorporating test inputs into learning.
In Proceedings of the Advances in Neural Information Processing Systems,

10, Cambridge, MA, 1997. MIT Press.

[29] P. Chaudhuri, W-D. Lu, and W-Y. Loh. Generalized regression trees.
Statistica Sinica, 5:641-666, 1995.



96

[30] V. Cherkassky and F. Mulier. Learning from Data. Wiley Inter-Science, 1998.

[31] V. Cherkassy, Y. Kim, and F Mulier. Constrained topological maps for
regression and classification. In Proceedings of Int. Conf. on Neural

Information Processing, New Zealand, November 1997,

[32] C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning,
20:273 297, 1995.

[33] CPLEX Optimization Incorporated, Incline Village, Nevada. Using the
CPLEX Callable Library, 1994.

[34] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines. Cambridge University Press, 2000.

[35] R. Cucchiara. Genetic algorithms for clustering in machine vision. Machine

Vision and Applications, 11:1 6, 1998.

[36] D.L. Davies and D.W. Bouldin. A cluster separation measure. IEEE
Transcations on Pattern Analysis and Machine Intelligence, 1(2):224 227,
1979.

[37] A. Demiriz and K. P. Bennett. Optimization approaches to semi-supervised
learning. In M. C. Ferris, O. L. Mangasarian, and J.-S. Pang, editors,
Applications and Algorithms of Complementarity, Boston, 2000. Kluwer
Academic Publishers. To Appear.

(38] A. Demiriz, K. P. Bennett, and M. J. Embrechts. A genetic algorithm
approach for semi-supervised clustering. Manuscript submitted for

publication http : //www.rpi.edu/ ~ demira/jsme.ps, 1999.

[39] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clustering
using genetic algorithms. In C. Dagli, editor, Proceedings of ANNIE99
(Artificial Neural Networks in Engineering). ASME Press, 1999.



[40]

[41]

[42]

[44]

[45]

[46]

[47]

48]

[49]

[50]

97

A. Demiriz, K. P. Bennett, and John Shawe-Taylor. Linear programming
boosting via column generation. Manuscript submitted for publication

http : | Jwww.rpi.edu/ ~ demira/mlj.ps, 2000.

L. Devroye, L. Gyorfi, and G. Lugosi. A probabilistic theory of pattern
recognition. Springer, New York, NY, 1996.

E. Diday. From data to knowledge:probabilistic objects for a symbolic data
analysis. In . Cox, P. Hansen, and B. Julesz, editors, Partitioning Data Sets,

pages 35 53. American Mathematical Society, 1995.

H. Drucker, C.J.C. Burges, L.Kaufman, A. Smola, and V. Vapnik. Support
vector regression machines. In M. Mozer, M. Jordan, and T. Petsche,

editors, Advances in Neural Information Processing Systems (NIPS) 9,
Cambridge, MA, 1997. MIT Press.

M. J. Embrechts, R. Kewley, and C. Breneman. Computationally intelligent
data mining for the automated design and discovery of novel
pharmaceuticals. In C. Dagli, editor, Intelligent Engineering Systems

throught Artificial Neural Networks. ASME Press, 1998.
B.S. Everitt. Cluster Analysis. John Wiley & Sons Inc., 1974.

D. Fisher. Knowledge acquisition via incremental conceptual clustering.

Machine Learning, 2, 1987.

R. Fourer, D. Gay, and B. Kernighan. AMPL A Modeling Language for
Mathematical Programming. Boyd and Frazer, Danvers, MA, 1993.

J.H. Friedman. Flexible metric nearest neighbor classification, 1994.

http : / Jwww — stat.stanford.edu/ ~ jhf/.

J.H. Friedman, R. Kohavi, and Y. Yun. Lazy decision trees. In Proceedings
of AAAI-96, Menlo Park, CA, 1996. AAAI-Press.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, MA, 1989.



98

[51] A. J. Grove and D. Schuurmans. Boosting in the limit: Maximizing the
margin of learned ensembles. In Proceedings of Fifteenth National

Conference on Artificial Intelligence (AAAI-98). AAAT Press, 1998.

[52] I. Guyon and D. G. Stork. Linear discriminant and support vector classifiers.
In A.J. Smola, P.L.. Bartlett, B. Scholkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 147-169, Cambridge, MA, 2000.
MIT Press.

[53] P. Hansen and B. Jaumard. Cluster analysis and mathematical

programming. Mathematical Programming, 79:191-215, 1997.

[54] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor

classification. IEFEE PAMI, 18:607-616, 1996.

[55] T. Hofmann and J. Buhmann. Hierarchical pairwise data clustering by
mean-field annealing. In Proceedings of the International Conference on

Artificial Neural Networks (ICANN’95), pages 197 202, 1995.

[56] T. Hofmann, J. Puzicha, and J. M. Buhmann. Deterministic annealing for
unsupervised texture segmentation. In Proceedings of the International
Workshop on Energy Minimization Methods in Computer Vision and
Pattern Recognition (EMMCVPR’97), Venice, 1997.

[57] F. Hoppner, F. Klawon, R. Kruse, and T. Runkler. Fuzzy cluster analysis.
Wiley, 1999.

(58] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall,
Englewood Cliffs, N.J., 1988.

[59] T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Furopean Conference on Machine

Learning(ECML), 1998.

[60] T. Joachims. Transductive inference for text classification using support

vector machines. In International Conference on Machine Learning, 1999.



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[70]

99

T. Kohonen. Learning vector quantitization. Neural Networks, 1, 1988.

L.I. Kuncheva and J.C. Bezdek. Nearest prototype classification: Clustering,
genetic algorithms, or random search? IEEE Transactions on Systems, Man,

and Cybernetics, 28(1):160-164, 1998.

S. Lawrence, A. C. Tsoi, and A. D. Back. Function approximation with
neural networks and local methods: Bias, variance and smoothness. In Peter
Bartlett, Anthony Burkitt, and Robert Williamson, editors, Australian
Conference on Neural Networks, ACNN 96, pages 16-21. Australian
National University, 1996.

O. L. Mangasarian. Arbitrary norm separating plane. Operations Research

Letters, 24(1-2), 1999.

O. L. Mangasarian. Generalized support vector machines. In A. Smola,
P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large
Margin Classifiers, pages 135 146, Cambridge, MA, 2000. MIT Press.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as

gradient descent in function space, 1999.

A. McCallum and K. Nigam. Employing em and pool-based active learning
for text classification. In Proceedings of the 15th International Conference on

Machine Learning (ICML-98), pages 350-358, 1998.

P.M. Murphy and D.W. Aha. UCI repository of machine learning databases.
Department of Information and Computer Science, University of California,

[rvine, California, 1992.

F. Murtagh. Multidimensional Clustering Algorithms. Physica-Verlag,
Vienna, 1985.

C.A. Murthy and N. Chowdhury. In search of optimal clusters using genetic
algorithms. Pattern Recognition Letters, 17:825 832, 1996.



[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

100

D. R. Musser and A. Saini. STL Tutorial and Reference Guide: C++
Programming with the Standard Template Library. Addison-Wesley, 1996.

S.G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill,
New York, NY, 1996.

R. T. Ng and J. Han. Efficient and effective clustering for spatial data
mining. In Proceedings of 20th VLDB Conference Santiago, Chile, 1994.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify
text from labeled and unlabeled documents. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98), 1998.

S. Odewahn, E. Stockwell, R. Pennington, R Humphreys, and W Zumach.
Automated star/galaxy discrimination with neural networks. Astronomical

Journal, 103(1):318-331, 1992.

W. Pedrycz. Algorithms of fuzzy clustering with partial supervision. Pattern

Recognition Letters, 3:13-20, 1985.
J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81 106, 1984.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

J.R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the 13th
National Conference on Artificial Intelligence, Menlo Park, CA, 1996. AAAI

Press.

G. Ratsch, S. Mika, T. Onoda, S. Lemm, and K.-R. Miiller. Barrier boosting.

Technical report, 2000. Private communication - submitted for publication.

G. Rétsch, B. Scholkopf, A.J. Smola, S. Mika, T. Onoda, and K-R. Miiller.
Robust ensemble learning. In A.J. Smola, P. L. Bartlett, B. Scholkopf, and

D. Schuurmans, editors, Advances in Large Margin Classifiers, pages

208 222, Cambridge, MA, 2000. MIT Press.



[82]

[83]

[84]

[85]

38

[89]

[90]

101

G. Ratsch, B. Scholkopf, A.J. Smola, K-R. Miiller, T. Onoda, and S. Mika.
v-arc ensemble learning in the presence of outliers. In S. Solla, T.K. Leen,

and K-R. Miiller, editors, Advances in Neural Information Processing

Systems 12, Cambridge, MA, 2000. MIT Press.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In Parallel distributed

processing: Explorations in the macrostructures of cognition, volume 1, pages

318-362, Cambridge, MA, 1986. Bradford Books.

A. Rusch and R. Wille. Knowledge spaces and formal concept analysis. In
H. Boch and W. Polasek, editors, Data Analysis and Information Systems,
pages 427 436. Springer, 1996.

M. Sarkar, B. Yegnanarayana, and D. Khemani. Clustering algorithm using
an evolutionary programming-based approach. Pattern Recognition Letters,

18:975 986, 1997.

SAS Institute Inc., Cary, North Carolina. SAS Language and
Procedures:Usage, Version 6, 1989.

R. Schapire, Y. Freund, P. Bartlett, and W. Sun Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. Annals of

Statistics, 26(5):1651 1686, 1998.

R. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Conference on
Computational Learning Theory, COLT’98, pages 80-91, 1998. to appear in

Machine Learning.

B. Scholkopf, A. Smola, and K-R. Miiller. Kernel principal component
analysis. In Proceedings of ICANN’97, pages 583-588. Springer Lecture
Notes in Computer Science, 1997.

B. Scholkopf, A. Smola, and K-R. Miiller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.



102

[91] B. Scholkopf, K. Sung, and V. Vapnik. Comparing support vector machines
with gaussian kernel to radial basis function classifiers. Technical Report

A.1. Memo No 1599, MIT, 1996.

[92] A. Smola, B. Schélkopf, and G. Rétsch. Linear programs for automatic
accuracy control in regression. In Proceedings ICANN’99, Int. Conf. on
Artificial Neural Networks, Berlin, 1999. Springer.

(93] M.O. Stitson, J.A.E. Weston, and V. Vapnik. Theory of support vector
machines. Technical Report CSD-TR-96-17, Royal Holloway, University of
London, 1996.

[94] K. Tsuda. Optimal hyperplane classifier with adaptive norm. Technical
Report ETL TR-99-9, Electrotechnical Laboratory, Japan, 1999.

[95] M. Vaidyanathan, R.P. Velthuizen, P. Venugopal, L.P. Clarke, and L.O. Hall.
Tumor volume measurements using supervised and semi-supervised mri

segmentation. In C. H. Dagli, editor, Proceedings of Artificial Neural
Networks in Engineering (ANNIE), 1994.

[96] V. Vapnik. The support vector method of function estimation. In C. M.
Bishop, editor, Neural Networks and Machine Learning, volume 168, pages
239-268. Springer, 1998. NATO ASI Series.

[97] V. N. Vapnik. FEstimation of dependencies based on empirical Data.
Springer, New York, 1982. English translation, Russian version 1979.

(98] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag,
New York, 1995.

[99] V. N. Vapnik. Statistical Learning Theory. Wiley Inter-Science, 1998.

[100] V. N. Vapnik and A. Ja. Chervonenkis. Theory of Pattern Recognition.
Nauka, Moscow, 1974. In Russian.

[101] V. N. Vapnik, S. Golowich, and A. Smola. Support vector method for

function approximation, regression estimation, and signal processing. In



103

M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems (NIPS) 9, Cambridge, MA, 1997. MIT

Press.

[102] M. Wall. GAlib: A C++ Library of Genetic Algorithm Components. MIT,
http://lancet.mit.edu/ga/, 1996.



