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Abstract

Network problems and related algorithms
(i.e. graph based techniques) are known
and studied by a diverse scientific and
applied community. Recent studies in
Machine Learning (ML) enable analyzing
graph data for solving certain problems
e.g. link analysis, citation analysis, su-
pervised and unsupervised learning. It is
a well-known fact that additional infor-
mation, whether in the form of additional
data, new variables or new set of infor-
mation from a different source (point of
view) might improve the underlying algo-
rithm’s performance in ML research. We
propose a methodology for solving net-
work problems by considering structural
information of the network together with
readily available problem definition. First,
the vertices (nodes) in the graph are ranked
and then the network problem is itera-
tively solved. The additional information
on the network structure can enable re-
ductions in the running time of exact al-
gorithms and improvement on the solu-
tion quality of heuristics. We show that
the approach is applicable, by demonstrat-
ing with on the well-known combinato-
rial optimization problem of TSP, traveling
salesman problem. We also outline how
the methodology can be adapted for solv-
ing the stable matching (marriage) prob-
lem. We report the performance of our
methodology, on the TSPLIB benchmark
datasets in comparison to the exact method
of CONCORDE and other heuristics pro-
posed in the literature.

1 Introduction

Certain network problems can be represented only
through models that are computationally hard to

solve. Traveling Salesman Problem (TSP) is one
of the most famous problems studied in various
disciplines. TSP is a fundamental Combinatorial
Optimization (CO) problem. Given a set of cities
and the costs (distances) associated with traversing
between pairs of cities, the objective of TSP is to
find the tour with the minimum total cost visiting
each city exactly once. Many problems encoun-
tered in a variety of fields can be directly posed
as TSP, or can be transformed into TSP through
clever modeling twists. TSP applications include
machine scheduling, cellular manufacturing, cir-
cuit design, routing problems in communications
and supply chain networks, and genome sequenc-
ing.

The TSP is known to be NP-complete. Al-
though it is very easy to state the TSP, it is ex-
tremely hard to solve it to optimality for large in-
stances. Therefore various approaches have been
deployed to overcome difficulties in solving TSP.
Some methods solely depend on meta-heuristics
based optimization such as using Genetic Algo-
rithms, Ant Colonies and Simulated Annealing.
Some other techniques are based on mathemati-
cal programming models such as branch-and-cut,
Linear Programming (LP) relaxation of Integer
Programming (IP) model, Lagrangian relaxation
of IP model. In addition there are some widely
used approximation algorithms to tackle with TSP.
The best published theoretical complexity result
is achieved by Held and Karp where their algo-
rithm has O(n?2") complexity. However the Con-
corde algorithm developed by Applegate, Bixby,
Chvétal and Cook (Applegate et al., 2007) has
achieved significant successes by optimally solv-
ing some large problems. It is based on branch-
and-cut and uses some heuristics to increase its ef-
ficiency.

The TSP has been a well-known example of a
hard combinatorial problem, commonly used to
test new ideas in problem solving. It is no co-



incidence that some of the early papers on sim-
ulated annealing, DNA computing, and other ap-
proaches for the combinatorial problems describe
their methods in the context of the TSP (Applegate
et al., 2007). So the TSP is an important test bed
of the new ideas.

An innovative and original approach is pro-
posed for solving network problems particularly
the TSP by borrowing the ideas from Graph Lapla-
cian. The aim is to rank the cities first accord-
ing to the underlying graph’s structure (Demiriz,
2008) and then to develop a family of algorithms
based on the rankings to solve the underlying net-
work problems. Once the sequence of the vertices
(cities in the TSP case) is given, it is easier to con-
struct a fast algorithm to solve the underlying net-
work problem. The rankings of the vertices simply
determine the sequence that the algorithm should
optimize the corresponding network problem.

The well-known Google’s PageRank algorithm
(Page et al., 1998) uses similar ideas for ranking
web documents. Essentially, the web documents
are ranked based on the incoming links (weights)
on the graph. Notice that in the case of the web
documents links are directed. The strength of the
PageRank comes from two innovations. The first
one is that realization of the hyperlinks as a mea-
sure of popularity. The second one is that the
usage of anchortext in web index in place of us-
ing page title alone. In both cases, new infor-
mation is embedded in learning process. A re-
cent poll (More Data or Better Algorithm?)! in
KDNUGGETS.COM suggests that more data is
preferred to better algorithms among data mining
practitioners. Therefore the proposed approach
utilizes so-called structural information for solv-
ing network problems in general. Potentially such
information should improve the existing heuristic
approaches. The similar successes are attainable
with this approach as in the case of the PageRank
algorithm.

The applicability of our approach is shown by
experimenting on TSPLIB? benchmark datasets.
We report results from some other heuristics and
the optimal tour lengths as well. We essentially
present three different versions of our approach
depending on the way of controlling the level of
the information complexity in the underlying TSP.
By the information complexity, we mean that ei-

"http://www.kdnuggets.com/news/2008/n08/1i.html
2http://www.iwnuni—heidelberg.dn:/groups/comopt/software/TSPLIB95/

ther the full distance matrix or the partial informa-
tion is present in the TSP. The full-matrix repre-
sentation is considered as the highest level of in-
formation complexity as unnecessary information
might exist within such representation.

The remaining of this paper is organized as fol-
lows. We introduce our methodology in the next
section with a toy example. We also give the de-
scription of the the way information complexity is
controlled in Section 2. We then give results based
on the experiments run on the benchmark datasets
from TSPLIB in the subsequent section. We fi-
nally conclude our paper in Section 4.

2 Foundation of the Methodology

Ranking the data is an ongoing research area with
diverse applications. In this paper the usage of a
ranking algorithm (Demiriz, 2008) based on graph
Laplacian (Belkin and Niyogi, 2004; Belkin et al.,
2006) is used to solve network problems. Rank-
ing problem has recently become a major research
area in machine learning. The ranking approach
used in this paper resembles the algorithm pro-
posed in (Zhou et al., 2004). The primary objec-
tive in that particular paper is to develop an algo-
rithm based on some semi-supervised approach to
rank the items for a given query. As in (Zhou et al.,
2004), the ranking approach can exploit the intrin-
sic manifold structure of the data. Formally, rank-
ing is defined as finding a function f : R — R
that orders the data X € R? correctly. The rank-
ing algorithm is based on graph representation
of the data. Thus a graph G = (V, E) can be
formed from X by Euclidean neighborhood rela-
tions where z € X is represented by the vertices V'
and the relationships are represented by the edges
E CV x V on the graph.

The spectral graph theory (Chung, 1997) is uti-
lized to tackle the ranking problem. Essentially,
the spectral properties of the normalized Laplacian
are used for this purpose. Normalized Laplacian
is defined as £ = D~Y/2LD~'/2 = D=1/2(D —
W)D~1/2 =1 — D='2W D~1/2 where W is the
adjacency matrix, D is a diagonal matrix formed
by row sums of W, L is the traditional Laplacian
matrix i.e. D — W, and [ is the identity matrix
(Chung, 1997). One of the most important spec-
tral properties of the normalized Laplacian (£) is
that its eigenvalues vary between 0 and 2. If there
are multiple eigenvalues which are equal to O then
the underlying graph is not connected. An eigen-



Table 1: Distance Matrix Between Airports (in
km) (Adapted from ((Gueret et al., 2000))

Al A2 A3 A4 A5 A6 A7

Al 0 786 549 657 331 559 250
A2 | 786 0 668 979 593 224 905
A3 | 549 668 0 316 607 472 467
A4 | 657 979 316 0 890 769 400
A5 | 331 593 607 890 0 386 559
A6 | 559 224 472 769 386 0 681
A7 | 250 905 467 400 559 681 0

value of 2 indicates that the graph is bipartite. On
the other hand, it is known from the convergence
of the random walk that the stationary distribution,
m, of the random walk is equivalent to the eigen-
vector corresponding to eigenvalue 1 of the under-
lying transition matrix i.e. P = D~'TW. In other
words, the corresponding eigenvector for this tran-
sition matrix, P, can easily be shown that is equal
tom = %. This particular stationary distribu-
tion is achieved, if the graph is connected.

Practically, there is no need to use the power
method to find the stationary distribution once it
is shown that the underlying graph is connected.
Otherwise, an algorithm is utilized that it is similar
to Google’s PageRank (Page et al., 1998) which is
not necessarily symmetric (undirected) to find the
stationary distribution of the random walk (Demi-
riz, 2008). Since the problem studied in this paper
is the symmetric TSP and the underlying graph is
connected, the stationary distribution 7 can simply
be utilized to rank the cities.

2.1 Description of the Algorithm

The proposed approach is summarized in Figure 1.
Essentially once the rankings are supplied either a
greedy approach can be used or the rankings are
used to warm-start any related algorithm to solve
the network problems (TSP in this case). In other
words, the sequence given by the rankings can be
used on any algorithm of choice to solve network
problems.

2.2 Toy Example

To demonstrate the approach on a toy example, the
sample dataset from (Gueret et al., 2000), (see Ta-
ble 1) is used. The dataset is given in the full-
matrix format to illustrate the algorithm simpler
in Table 1. The sample data is originally used

e Calculate the stationary distribution 7 to rank
the vertices

1. If a connected graph (e.g. a symmetric
adjacency matrix) is considered, simply
use T = % formula.

2. Otherwise use the power method such as
the PageRank algorithm starting from 7.

e Starting from the ranking results use either
a greedy approach or warm start any known
method to find solution to the network prob-
lem.

Figure 1: A Concise Depiction of the Algorithm

to build a mathematical programming model to
plan (construct) a flight tour between airports. If
7 is computed from the distance (adjacency in
this case) matrix, the stationary distribution for
the airports is calculated to be as (0.1300, 0.1724,
0.1278, 0.1665, 0.1397, 0.1283, 0.1354). Thus the
ranking is (A2, A4, A5, A7, Al, A6, A3).

A simple algorithm can be devised once the se-
quence (ranking) is given as follows. Given that
A2 has the highest rank, greedy approach needs to
start optimizing from A2 first. It is the best choice
to fly to A6 from A2 (224 km) based on the dis-
tance matrix. Thus a flight tour must have a sec-
tion from A2 to A6. At this point column 6 (A6)
and row 2 (A2) can be crossed-out from the dis-
tance matrix to enable the selection correctly for
the remaining steps. We then check the row 4 for
the shortest distance available to fly since A4 is
the next in the ranking list. From A4 the shortest
way leads to A3 which is 316 km in distance. We
then cross-out column 3 and row 4 from the dis-
tance matrix. The next airport is A5 in the ranking
list to be optimized. It is the best choice to fly
Al from A5 (331 km). We cross-out column 1
and row 5 at this step. For airport A7, the cheap-
est flight will be to A4 since the first column is
crossed-out already i.e. 400 km in distance. We
then cross-out column 4 and row 7. Similarly from
Al, A6, and A3 the best flights will be to A7, AS,
and A2 respectively. Thus the best tour accord-
ing to this greedy approach will include follow-
ing legs: A2—A6, A4—A3, A5—Al, AT—A4,
Al1—A7, A6—A5, and A3— A2 in total a distance
of 2575 km. In short a tour starting A2 will be
A2—A6—A5—A1—AT7T—A4—A3—A2. Thisis
indeed the shortest possible tour. So with the help



of ranking results, the greedy algorithm is able to
find the optimal tour.

2.3 Expanding the Scope

It is evident from initial studies that search space
can significantly be reduced by ranking the ver-
tices in network problems. It is also evident that
information overloading might cause some prob-
lems at the ranking step. By information over-
loading it is meant that a fully-connected distance
matrix may have excessive information in the first
place. Therefore some of the links in the graph
might be unnecessary after all. Similar observa-
tions are also made in (Sourlas, 1986). In (Sourlas,
1986), it is noticed that the solutions only contain
links between very near neighbors. So it is ac-
ceptable to remove some of the links. In short,
more work is needed to justify the need to trim
search space by removing some links of the un-
derlying graphs deliberately. This indeed creates a
new family of problem: reducing the search space
by locating and removing the excessive informa-
tion in the adjacency matrix.

To control the level of information complexity
we can devise three different approaches. We can
essentially change the size of the nearest neighbor-
hood across the cities until the tour constraints are
violated and the size of the largest distance to con-
stitute the neighborhood boundaries by starting the
largest distance in the distance matrix to remove
and then continue removing until tour constraints
are violated. These two methods effectively con-
struct constraints for all the cities i.e. they deter-
mine the size of the neighborhood globally. In
other words, assume there are n cities in the TSP,
practically the original TSP has a nearest neigh-
borhood size of n — 1 i.e. the full distance matrix;
then we can start reducing the nearest neighbor-
hood size by removing the largest distance from
any city to the others until the tour constraints are
violated i.e. a tour can no longer be formed ac-
cording to greedy approach. In the second ap-
proach, by starting from the largest distance in the
full distance matrix to remove one by one, we can
effectively draw balls (i.e. € — ball) around the
cities to determine minimally acceptable balls that
forms a tour. Notice that the size of these balls are
same for all the cities in this way. The third way
is to determine a neighborhood size for the each
city separately. In this way, we can essentially ad-
just the € — balls for the each city in the TSP. No-

tice once the ranking is determined, all three ap-
proaches greedily choose the next best movement
at the each step until the tour constraints are vio-
lated i.e. no more movement is possible or addi-
tion of such a movement creates a short tour which
is not feasible. We leave further discussions on the
details of our implementation to the next section.

So far our formulation (usage) of Graph Lapla-
cian ranks cities (nodes) based on the total dis-
tances. This is equivalent to using the mean value
over n cities (nodes) on fully connected network.
However it might be problematic to use the sum-
mation in our case since we try to reduce the
information complexity which effectively assigns
zeros to some corresponding values. In other
words it disconnects some cities from each other.
Therefore one can argue that using the mean (ex-
pected) value which excludes the zeros (discon-
nected cities) from the calculation is a better statis-
tic than using the summation. Not only the mean
value but also the variance (or standard deviation)
could be used in this case as an alternative statis-
tic determining the ranking values again on non-
zero ones i.e. excluding the disconnected cities.
Thus we will use both statistics to rank the cities
in the next section as well as plain summation over
n cities regardless their connectivity.

Our approach can be applied to other network
problems. We can easily utilize the idea of ranking
vertices on the stable marriage (matching) prob-
lem too. The problem is defined as “given n men
and n women, where each person has ranked all
members of the opposite sex with a unique num-
ber between 1 and n in order of preference, marry
the men and women off such that there are no two
people of opposite sex who would both rather have
each other than their current partners If there are
no such people, all the marriages are stable” 3 .
The Gale-Shapley (G-S) algorithm finds the stable
solution with an O(n?) complexity. Assume that
the preferences are given as in the G-S algorithm.
A ranking scheme can be constructed by summing
incoming votes (preferences). Essentially there
are two n x n preference matrices: men’s and
women’s preferences. Each person lists his or her
preferences from the opposing sex. When the pref-
erences are summed column wise, the people in
the opposing sex are essentially ranked. Thus ev-
erybody gets a ranking point. Notice that G-S al-
gorithm is not neutral in terms of the sex; it weighs

3Wikipedia
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Figure 2: Results from lin105 Using LocDist with-
out Heat Kernel

one of the sexes (man or women depending on the
choice). However the ranking scheme is neutral.
Then the priority can be given to the highest rank-
ing person to choose his or her mate and continue
with the next person in the ranking list to choose
his or her mate until every person is matched with
another person. Of course when one chooses his or
her mate, he or she chooses the first available per-
son on his or her preference list at that particular
step. Notice that there is no engagement state in
this type of matching and the complexity is O(n).
This particular problem is presented here to show
that the proposed approach in this paper can be
applied to other network problems as well beyond
the TSP. However, caution should be taken as this
approach may not result in a stable marriage. In
the following section we report results from the
experiment on TSPLIB benchmark datasets.

3 Experimental Evaluation

As mentioned in Section 2.3, we run experiments
with three different versions of our algorithm. All
of them are built on the idea of reducing the infor-
mation complexity of TSP i.e. full-matrix repre-
sentation. The first one utilizes the idea of reduced
nearest neighborhood in terms of size. The second
one on the other hand utilizes a reduced € — ball
for all the cities in the graph at the same time. The
third approach generalizes € — balls to the all cities
by searching the locally minimum € — balls. Thus
the third approach can potentially reduce the size
of the neighborhood for the each city in the graph.

Before we report the results from our approach,
we first present the results from the other well-

Table 2: Optimal and Heuristics Results

Dataset ~ Greedy = Boruvka  Q-Boruvka  Lin-Ker.  Optimal
2280 3108 3261 3151 2579 2579
bayg29 2066 2012 2018 1610 1610
bays29 2277 2134 2653 2020 2020
berlin52 9951 10117 9529 7542 7542
ch130 7167 6861 7283 6110 6110
d493 40836 40340 39877 35132 35002
d657 58053 57365 57212 49002 48913
eil51 521 541 480 426 426
eil76 631 577 609 538 538
lin105 16766 16469 17582 14379 14379
rd400 17359 18716 18004 15281 14379
u2319 262757 271600 264996 234519 234256

Table 3: Results from Three Different Methods
with Simple Summation

Dataset RedNN (Size) RedDist (Dist) LocDist (Dist)

2280 5364 (279) 3971 (225) 3971 (156)
bayg29 2278 (26) 1795 (25) 2014 (282)
bays29 2790 (28) 2415 (358) 2415 (358)

berlin52 12313 (49) 10682 (1092) 10277 (859)
ch130 9934 (129) 8653 (1) 8809 (413)

493 68903 (492) 68728 (3465) 68728 (3465)

d657 106383 (656) 103950 (3034) 103950 (3024)

eil51 624 (50) 571 (57) 506 (35)

cil76 888 (75) 739 (57) 722 (46)

1in105 25715 (102) 20643 (31) 18991 (1489)
rd400 31145 (397) 25936 (908) 23578 (656)
u2319 610482 (2318) 478108 (4438) 478108 (3406)

known heuristics namely Greedy, Boruvka, Quick
Boruvka and Lin-Kernighan in addition to the op-
timal results. The experiments reported in Table 2
are run by using CONCORDE *. Clearly the Lin-
Kernighan method is the best heuristics. The worst
result for the each benchmark problem is format-
ted in bold in Table 2 for the purpose of compar-
isons later. In the subsequent part of the paper,
when we present the results from our approach we
highlight better results than the worst cases high-
lighted in Table 2.

In Table 3, we report results from the three dif-
ferent versions (RedNN, RedDist and LocDist) of
the reduced information complexity. Recall that
all the three methods rank the cities based on the
neighborhood boundaries drawn by different fla-
vors of the information complexity. We report re-
sults on 12 different TSPLIB benchmark datasets
in various sizes. Reduction boundaries are given
in parentheses in the form of either NN size or the
size of the ¢ — ball. Distance based (¢ — balls) re-
ductions give consistently better results compared
with nearest neighbor (NN). Notice that NN based
reduction cannot reduce the size of the neighbor-
hood as efficient as the distance based methods.

We also extend our approach with the uti-
lization of the heat kernels (Demiriz, 2008) i.e.

“http://www.tsp.gatech.edu/concorde/index.html



Table 4: Results from the Usage of Heat Kernels with Simple Summation

Dataset ~ MaxDist RedNNheat (Size) RedDistheat (Dist) LocDistheat (Dist)
a280 302 3973 (199) 4328 (201) 4234 (149)
bayg29 386 2024 (25) 1973 (315) 1973 (165)
bays29 509 3164 (28) 3164 (509) 3164 (437)
berlin52 1716 9879 (37) 10394 (1507) 9547 (774)
ch130 939 9626 (110) 9930 (704) 8752 (407)
d493 4296 65549 (421) 67374 (3525) 65593 (2479)
d657 4771 89873 (461) 93860 (3139) 93158 (2749)
eil51 86 573 (46) 573 (68) 549 (46)
eil76 85 717 (69) 735 (71) 705 (54)
lin105 3189 22191 (70) 24933 (2180) 21983 (1229)
rd400 1353 27521 (251) 27777 (892) 27777 (659)
u2319 6862 500816 (1512) 543725 (3936) 543725 (3499)

exp[—d*(zi, xj)/20°] where d(z;,z;) is the dis-
tance between point x; and point ;. The results
are reported in Table 4. We first normalize the
benchmark datasets by dividing by correspond-
ing maximum distances reported in Table 4 and
then set the parameter o to be equal to 1. It is
noted that the usage of heat kernels enables the
algorithm to reduce the information complexity
across three approaches i.e. the reduced NN, the
reduced distance and the local distance. These re-
sults clearly indicate that if we can reduce the in-
formation complexity of traveling salesman prob-
lems, we might achieve better results. Notice that
we do not attempt to search for the optimum pa-
rameter (o) values in these experiments. We prefer
using o equal to 1 for the normalized data to avoid
any extra parameter search. However the kernel
parameter certainly should be optimized to yield
better tours. Our aim with these experiments is to
show the applicability of our idea.

To depict the change of the tour lengths by re-
ducing the information complexity in the local dis-
tance method, we report results from 1inl105
dataset in Figure 2. The maximum distance in
1in105 dataset is 3189 as reported in Table 4.
The algorithm starts with the full distance matrix
and then reduces the distance at each iteration. Re-
call that any connection that have a higher distance
than the lower limit is omitted from the distance
matrix. Thus the information complexity is re-
duced at each iteration. It should also be noted
that the lower limits are different for the each point
(city) locally. In other way, the lowest distance
limit, i.e. 1489, is not for all the points (cities)
but it is valid for some localities. The minimum
tour length, 18991, is achieved at a distance of
1545. The distance matrices for the TSPs are usu-
ally provided with full connections. However, in
reality a city is directly connected with only few
other cities. We think that if only the real con-

Table 5: Results from Three Different Methods

with Mean Value
Dataset RedNN (Size) RedDist (Dist) LocDist (Dist)
2280 5364 (279) 4094 (189) 3858 (107)
bayg29 2278 (28) 1596 (25) 1956 (220)
bays29 2790 (28) 2353 (308) 2335 (269)
berlin52 12313 (49) 10455 (15) 12054 (871)
ch130 9934 (129) 8220 (1) 9224 (393)
d493 68903 (492) 63824 (18) 68402 (3434)
d657 106383 (656) 104475 (2985) 104475 (2985)
eil51 624 (50) 537 (2) 590 (42)
eil76 888 (75) 820 (2) 863 (46)
lin105 25715 (102) 19646 31) 19452 (1263)
rd400 31145 (395) 28840 (754) 23017 (458)
u2319 610482 (2318) 554949 (3538) 457532 (2319)

Table 6: Results from Three Different Methods
with Mean Value on Heat Kernel

Dataset RedNN (Size) RedDist (Dist) LocDist (Dist)
2280 4169 (177) 4070 (217) 3983 (120)
bayg29 2024 (25) 2024 (315) 1884 (103)
bays29 3164 (28) 3164 (509) 2303 (89)
berlin52 9674 (34) 10024 (1267) 9341 (428)
ch130 9648 (121) 9908 (678) 7850 (108)
d493 66796 (410) 66606 (3535) 66450 (3308)
d6s57 94103 (389) 93018 (3211) 93018 (2863)
eil51 573 (44) 560 (64) 511 (19)
eil76 712 (66) 735 (70) 680 (24)
lin105 22940 (70) 24941 (2324) 18085 (775)
rd400 28494 (234) 28859 (882) 21230 (135)
u2319 543954 (1238)  535715(3805) 449709 (2220)

nections are provided, the problem will have less
information complexity. Thus we think that the
ranking approach might perform remarkably well
in this situation.

3.1 Extending the Results to Other Statistics

In this section we report results of the three meth-
ods used above with different statistics namely
mean and variance of the corresponding vertices
(cities) of the distance (or kernel) matrix. This
could be perceived a bit departure from the idea of
Graph Laplacian. As discussed in Section 2.3, we
effectively disconnect some vertices by reducing
the information complexity. Therefore to prevent
the bias of the disconnected vertices, we propose
the usage of the mean value and the variance as



Table 7: Results from Three Different Methods
with Variance

Dataset RedNN (Size) RedDist (Dist) LocDist (Dist)
a280 5042 (279) 3990 (0) 3877 (92)
bayg29 2257 (27) 1948 (244) 1808 (204)
bays29 2870 (28) 2073 (0) 2294 (55)
berlin52 11000 (50) 10675 (1387) 8811 (747)
ch130 9960 (128) 7049 (1) 7980 (426)
d493 70659 (492) 68323 (3378) 68323 (3378)
d657 98964 (656) 95904 (3112) 93142 (3037)
eil51 616 (50) 547 (47) 547 (45)
eil76 862 (74) 734 (51) 701 (49)
lin105 26225 (104) 22899 (2142) 19671 (978)
rd400 30890 (398) 23240 (728) 22808 (538)
u2319 536742 (2318) 470039 (100) 471603 (2961)

Table 8: Results from Three Different Methods
with Variance on Heat Kernel

Dataset RedNN (Size) RedDist (Dist) LocDist (Dist)
2280 5102 (279) 3625 (167) 3625 (108)
bayg29 2247 (28) 1760 (226) 1760 (163)
bays29 2593 (28) 2575 (300) 2311 (234)
berlin52 11358 (49) 11168 (1163) 9450 (1041)
ch130 10315 (129) 8517 (484) 7710 (296)
d493 72457 (492) 69116 (3620) 69116 (3558)
d657 106777 (656) 101600 (3120) 99620 (3046)
eil51 624 (50) 567 (45) 567 (45)
eil76 857 (75) 773 (51) 741 (44)
1lin105 23772 (104) 21537 (1832) 19671 (1195)
rd400 31389 (398) 23932 (703) 22731 (543)
u2319 583728 (2318) 490255 (3130) 456026 (2631)

alternative statistics. We use similar experimen-
tal setup as above on non-zero values of distance
(heat kernel) matrix. The results are reported in
Tables 5, 6, 7 and 8. We present results on both
the plain distance matrix and the heat kernel ma-
trix.

The results indicate some improvements over
simple summation. Notably we now have more
highlighted results indicating that the results are
better than the some worst cases of the known
heuristics reported in Table 2. Notice that our ap-
proach clearly fails for higher dimensional prob-
lems i.e. larger TSPs. This certainly indicates that
the search procedure is not as powerful as needed
and it is highly prone to local minima. However
the scope of our study is simply to show the appli-
cability of our approach.

3.2 Experimenting with the Heat Kernel
Parameter

In this section we report results from the three
methods studied in the paper with the usage of
the summation, the mean value and the variance
of each row of the kernel matrix. In these experi-
ments for the normalized data we change the heat
kernel parameter o between 0.4 and 1.6. The re-
sults are depicted in Figures 3, 4 and 5. Clearly
the method LocDist outperforms the others in-
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Figure 3: Changing Heat Kernel Parameter with
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dicating that reducing the information complexity
locally pays off with constantly better tours.

We still need to do further research to extend
the idea of reducing the information complexity to
other heuristics methods and the usage of ranking
on traveling salesman problems. The aim of this
set of the experiments is to show how changing
the kernel parameter o affects the ranking results
as well as TSP solutions.

4 Conclusions

We use the idea of Graph Laplacian to rank the
data (cities) in order to solve underlying network
problems specifically TSP. The idea is promising
and requires further research to reach a conclu-
sive outcome. We show that reducing the informa-
tion complexity in TSP will result in better tours.
This can be extended to any known methods in
general. Different approaches to reduce the infor-
mation complexity can be proposed for this pur-
pose. We implement three methods in this regard
which are named as reduced NN, reduced distance
and local distance. We show the applicability of
our idea by experimental evaluations on TSPLIB
datasets. We think that ranking will result in better
tours in the case of networks (graphs) with limited
connections provided that the tour constraints are
satisfied. In general, the idea of ranking nodes of
any network to solve the underlying network prob-
lem can be efficiently implemented. We show this
specifically on TSP and discuss the applicability
on matching problems particularly stable marriage
problem.

In our experiments, we reduce the information
complexity starting from the fully connected dis-
tance matrix. However the direction of the search
can be changed to start with an empty distance ma-
trix and then add connections to it to find best pos-
sible partial connection matrix that satisfy the tour
constraints. We also think that recent advances in
constraint programming can be potentially utilized
with the idea of ranking presented in this paper to
solve TSPs and other network problems in general.
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