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Abstract We consider practical methods for adding constraints to the
k-means clustering algorithm in order to avoid local solutions with empty
clusters or clusters having very few points. We often observe this phenom-
ena when applying k-means to datasets where the number of dimensions is
d ≥ 10 and the number of desired clusters is k ≥ 20. Moreover, recent stud-
ies have shown successful formulations of various other types of constraints.
Particularly, must-link and cannot-link types constraints have been studied in
several papers. An appropriate objective function needs to be constructed to
find clusters that satisfy minimum capacity, must-link and cannot-link pair-
wise constraints at the same time. Obviously, it requires an analysis of the
applicability and the level of complexity of the constraint types.

We propose explicitly adding k constraints to the underlying clustering
optimization problem requiring that each cluster have at least a minimum
number of points in it i.e. minimum capacity. We then investigate the result-
ing cluster assignment step. Numerical tests on real datasets indicate that the
constrained approach is less prone to poor local solutions, producing a better
summary of the underlying data. We also successfully formulate extended op-
timization models to cover other types of assignment constraints, specifically
pairwise assignment constraints as well.
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9.1 Introduction

The k-means clustering algorithm [16] has become a workhorse for the data
analyst in many diverse fields. One drawback to the algorithm occurs when it
is applied to datasets with n data points in d ≥ 10 dimensional real space R

d

and the number of desired clusters is k ≥ 20. In this situation, the k-means
algorithm often converges with one or more clusters which are either empty
or summarize very few data points (i.e. one data point). Preliminary tests on
clustering sparse 300-dimensional web-browsing data indicate that k-means
frequently converges with truly empty clusters. For k = 50 and k = 100, on
average 4.1 and 12.1 clusters are empty.

Incorporating prior knowledge, whether in the form of firmly defining the
number of non-empty clusters or pairwise relationships, is very essential in
partially supervised clustering. Like the general clustering problem, the par-
tially supervised clustering problem can also be posed as an optimization
problem. With partial supervision, the underlying clustering model can be
used to prevent poor local solutions.

We propose explicitly adding k constraints to the underlying clustering op-
timization problem requiring that cluster h contain at least τh points. We
focus on the resulting changes to the k-means algorithm and compare the
results from standard k-means and the proposed constrained k-means algo-
rithms. Empirically, for modest values of τh, solutions are obtained that better
summarize the underlying data.

Since clusters with very few or no data points may be artifacts of poor lo-
cal minima, typical approaches to handling them within the standard k-means
framework include re-running the algorithm with new initial cluster centers or
checking the cluster model at algorithm termination, resetting empty clusters,
and re-running the algorithm. Our approach avoids the additional computa-
tion of these heuristics which may still produce clusters with too few points. In
addition to providing a well-posed mathematical way to avoid small clusters,
this work can be generalized to other constraints ensuring desirable clustering
solutions (e.g. outlier removal or specified groupings) and to Expectation-
Maximization probabilistic clustering.

Alternatively, empty clusters can be regarded as desirable “natural” regu-
larizer of the cluster model. This heuristic argument states that if the data
does not “support” k clusters, then allowing clusters to go empty, and hence
reducing the value of k, is a desirable side effect. But there are applications
in which, given a value of k, one desires to have a cluster model with k non-
empty clusters. These include the situation when the value of k is known a
priori and applications in which the cluster model is utilized as a compressed
version of a specific dataset [5, 19].

A significant part of this chapter is based on our earlier work in [8]. How-
ever we extend our formulations in this chapter to cover pairwise assignment
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constraints and a new constraint on minimum capacity on labeled points as-
signed to each cluster. The remaining portion of the chapter is organized as
follows. Section 9.2 formalizes the constrained clustering optimization prob-
lem and outlines the algorithm computing a locally optimal solution. The
sub-problem of computing cluster assignments so that cluster h contains at
least τh points is discussed in Section 9.3. Section 9.4 presents numerical
evaluation of the algorithm in comparison with the standard k-means im-
plementation on real datasets. We report results on both small and large
datasets in Section 9.4. In addition to constrained k-means results, we report
also constrained k-median results and compare them. In Section 9.5, we pro-
vide a wide variety of extensions to our base model to incorporate new types
of assignment constraints and Section 9.6 concludes the chapter.

9.2 Constrained Clustering Problem and Algorithm

Given a dataset X = {xi}n
i=1 of n points in R

d and a number k of desired
clusters, the k-means clustering problem is as follows. Find cluster centers
µ1, µ2, . . . , µk in R

d such that the sum of the 2-norm distance squared between
each point xi and its nearest cluster center µh is minimized. Specifically:

min
µ1,...,µk

n∑
i=1

min
h=1,...,k

(
1

2
‖xi − µh‖2

)
. (9.1)

By [10, Lemma 2.1], Problem (9.1) is equivalent to the following problem
where the min operation in the summation is removed by introducing “selec-
tion” variables Ti,h.

minimize
µ,T

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.2)

Note that Ti,h = 1 if data point xi is closest to center µh and zero otherwise.

Problem (9.2) or, equivalently (9.1), is solved by the k-means algorithm
iteratively. In each iteration, Problem (9.2) is solved first for Ti,h with the
cluster centers µh fixed. Then, (9.2) is solved for µh with the assignment
variables Ti,h fixed. The stationary point computed satisfies the Karush-
Kuhn-Tucker (KKT) conditions [17] for Problem (9.2), which are necessary
for optimality.



206 Constrained Clustering: Advances in Algorithms, Theory, and Applications

k-means Clustering Algorithm Given a database X of n points
in R

d and cluster centers µ1,t, µ2,t, . . . , µk,t at iteration t, compute
µ1,t+1, µ2,t+1, . . . , µk,t+1 at iteration t + 1 in the following 2 steps:

1. Cluster Assignment. For each data record xi ∈ X , assign xi to cluster
h(i) such that center µh(i),t is nearest to xi in the 2-norm.

2. Cluster Update. Compute µh,t+1 as the mean of all points assigned
to cluster h.

Stop when µh,t+1 = µh,t, h = 1, . . . , k, else increment t by 1 and go to step 1.

Suppose cluster h is empty when Algorithm 9.2 terminates, i.e.,
n∑

i=1

Ti,h =

0. The solution computed by Algorithm 9.2 in this case satisfies the KKT
conditions for Problem (9.2). Hence, it is plausible that the standard k-means
algorithm may converge with empty clusters. In practice, we observe this
phenomenon when clustering high-dimensional datasets with a large number
of clusters.

The KKT conditions [17] for Problem (9.2) are:

k∑
h=1

Ti,h = 1∀i, Ti,h ≥ 0∀i, h,

‖xi − µh‖2 = min
h̃=1,...,k

‖xi − µh̃‖2 ⇔ Ti,h ≥ 0,

n∑
i=1

Ti,h > 0 ⇒ µh =

n∑
i=1

Ti,hxi

n∑
i=1

Ti,h

n∑
i=1

Ti,h = 0 ⇒ µh arbitrary.

To avoid solutions with empty clusters, we propose explicitly adding con-
straints to Problem (9.2) requiring that cluster h contain at least τh data

points, where
k∑

h=1

τh ≤ n. This yields the following constrained k-means
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problem:

minimize
µ,T

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)

s.t.

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.3)

Like the classic k-means algorithm, we propose an iterative algorithm to solve
(9.3).

Constrained k-means Clustering Algorithm Given a database X
of n points in R

d, minimum cluster membership values τh ≥ 0, h =
1, . . . , k and cluster centers µ1,t, µ2,t, . . . , µk,t at iteration t, compute
µ1,t+1, µ2,t+1, . . . , µk,t+1 at iteration t + 1 in the following 2 steps:

1. Cluster Assignment. Let T t
i,h be a solution to the following linear

program with µh,t fixed:

minimize
T

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh,t‖2

)

s.t.

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.4)

2. Cluster Update. Update µh,t+1 as follows:

µh,t+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

T t
i,hxi

n∑
i=1

T t
i,h

if

n∑
i=1

T t
i,h > 0,

µh,t otherwise.

Stop when µh,t+1 = µh,t, h = 1, . . . , k, else increment t by 1 and go to step 1.

Like the traditional k-means approach, the constrained k-means algorithm
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iterates between solving (9.3) in Ti,h for fixed µh, then solving (9.3) in µh for
fixed Ti,h. We end this section by with a finite termination result similar to
[9, Theorem 7].

PROPOSITION 9.1
The Constrained k-means Algorithm 9.2 terminates in a finite number of

iterations at a cluster assignment that is locally optimal. Specifically, the
objective function of (9.3) cannot be decreased by either reassignment of a

point to a different cluster, while maintaining

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k, or

by defining a new cluster center for any of the clusters.

PROOF At each iteration, the cluster assignment step cannot increase
the objective function of (9.3). The cluster update step will either strictly
decrease the value of the objective function of (9.3) or the algorithm will
terminate since

µh,t+1 = arg min
µ

n∑
i=1

k∑
h=1

T t
i,h ·

(
1

2
‖xi − µh‖2

)

is a strictly convex optimization problem with a unique global solution. Since
there are a finite number of ways to assign n points to k clusters so that cluster
h has at least τh points, since Algorithm 9.2 does not permit repeated assign-
ments, and since the objective of (9.3) is strictly non-increasing and bounded
below by zero, the algorithm must terminate at some cluster assignment that
is locally optimal.

Although our problem formulation is given for the constrained k-means
algorithm, by utilizing a 1-norm cost function and using a 1-norm distance
metric for the cluster assignment and update steps we can readily extend our
formulation to run constrained k-median algorithm. In the next section we
discuss solving the linear program sub-problem in the cluster assignment step
of Algorithm 9.2 as a minimum cost network flow problem.

9.3 Cluster Assignment Sub-problem

The form of the constraints in the cluster assignment sub-problem (9.4)
make it equivalent to a Minimum Cost Flow (MCF) linear network optimiza-
tion problem [6]. This is used to show that the optimal cluster assignment
will place each point in exactly one cluster and can be found using fast net-
work simplex algorithms. In general, a MCF problem has an underlying graph
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FIGURE 9.1: Equivalent Minimum Cost Flow formulation of (9.4).

structure. Let N be the set of nodes. Each node i ∈ N has associated with
it a value bi indicating whether it is a supply node (bi > 0), a demand node

(bi < 0), or a transshipment node (bi = 0). If
∑
i∈N

bi = 0, the problem is

feasible (i.e. the sum of the supplies equals the sum of the demands). Let A
be the set of directed arcs. For each arc (i, j) ∈ A, the variable yi,j indicates
amount of flow on the arc. Additionally, for each arc (i, j), the constant ci,j

indicates the cost of shipping one unit flow on the arc. The MCF problem

is to minimize
∑

(i,j)∈A

ci,j · yi,j subject to the sum of the flow leaving node i

minus the sum of flow incoming is equal to bi. Specifically, the general MCF
is:

minimize
y

∑
(i,j)∈A

ci,h · yi,j

s.t.

∑
j

yi,j −
∑

j

yj,i = bi,∀i ∈ N

0 ≤ yi,j ≤ ui,j , ∀(i, j) ∈ A.

Let each data point xi correspond to a supply node with supply = 1 (bxi
=

1). Let each cluster µh correspond to a demand node with demand bµh
= −τh.

Let there be an arc in A for each (xi, µh) pair. The cost on arc (xi, µh) is
‖xi − µh‖2. To satisfy the constraint that the sum of the supplies equals the
sum of the demands, we need to add an artificial demand node a with demand

ba = −n +
k∑

h=1

τh. There are arcs from each cluster node µh to a with zero

cost. There are no arcs to or from the data point nodes xi to the artificial
node a. See Figure 9.1. Specifically, let N = {xi, i = 1, . . . , n} ∪ {µh, h =
1, . . . , k} ∪ {a}. Let A = {(xi, µh), xi, µh ∈ N} ∪ {(µh, a), µh ∈ N}. With
these identifications and the costs, supplies and demands above, (9.4) has an
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equivalent MCF formulation. This equivalence allows us to state the following
proposition that integer values of Ti,h are optimal for (9.4).

PROPOSITION 9.2
If each τh, h = 1, . . . , k is an integer, then there exists an optimal solution of
(9.4) such that Ti,h ∈ {0, 1}.

PROOF Consider the equivalent MCF formulation of (9.4). Since bxi
=

1, ∀xi ∈ N , bµh
= −τh, and ba = −n +

k∑
h=1

τh are all integers, it follows

from [6, Proposition 2.3] that an optimal flow vector y is integer-valued. The
optimal cluster assignment values Ti,h correspond yxi,µh

and, since each node

xi has 1 unit of supply, the maximum value of Ti,h at a solution is 1.

Hence, we are able to obtain optimal {0, 1} assignments without having
to solve a much more difficult integer programming problem. In addition to
deriving the integrality result of Proposition 9.2, the MCF formulation allows
one to solve (9.4) via codes specifically tailored to network optimization [6].
These codes usually run 1 or 2 orders of magnitude faster than general linear
programming (LP) codes.

9.4 Numerical Evaluation

We conducted two different sets of experiments on machine learning bench-
mark datasets provided in [1]. In the first set of experiments, we report results
using two real datasets: the Johns Hopkins Ionosphere dataset and the the
Wisconsin Diagnostic Breast Cancer dataset (WDBC) [1]. The results from
the first set of experiments are also reported in [8].

The Ionosphere dataset contains 351 data points in R
33 and values along

each dimension were normalized to have mean 0 and standard deviation 1.
The WDBC dataset subset used consists of 683 normalized data points in
R

9. The values of τh (denoted by τ) were set equally across all clusters.
The ILOG CPLEX 6.5 LP solver was used for cluster assignment. For initial
cluster centers sampled uniformly on the range of the data, k-means produced
at least 1 empty cluster in 10 random trials on WDBC for k ≥ 30 and on Ion
for k ≥ 20. Figures 9.2 and 9.3 give results for initial clusters chosen randomly
from the dataset. This simple technique can eliminate many empty clusters.
Figure 9.2 shows the frequency with which the standard k-means algorithm
9.2 converges to clusters having fewer than τ points.

The effect on the quality of the clustering by the constraints imposed by
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the constrained k-means Algorithm 9.2 is quantified by the ratio of the aver-
age objective function of (9.1) computed at the constrained k-means solution
over that of the standard k-means solution. Adding constraints to any min-
imization problem can never decrease the globally optimal objective value.
Thus we would expect this ratio to be greater than 1. Surprisingly the con-
strained k-means algorithm frequently found better local minima (ratios less
than 1) than did the standard k-means approach. This might be due to the a
local solution with a large cluster, some other clusters with few points and/or
even empty clusters. Note that the same starting points were used for both
algorithms. Results are summarized in Figure 9.3. Notice that for a fixed
k, solutions computed by constrained k-means are equivalent to standard k-
means for small τ -values. For large τ -values, the constrained k-means solution
is often inferior to those of standard k-means. In this case, to satisfy the τ -
constraints, the algorithm must group together points which are far apart
resulting in a higher objective value. For a given dataset, superior clustering
solutions are computed by the constrained k-means algorithm when τ is cho-
sen in conjunction with k. For small values of k (e.g. k = 5) we observe ratios
< 1 up to τ = 50 (maximum tested) on Ionosphere. For k = 20, we begin to
see ratios > 1 for τ = 10. Similar results are observed on WDBC.

For a given values of k and τh, h = 1, . . . , k, effort is made so that the
τh constraints are satisfies by the initial cluster centers and the final cluster
centers computed by k-means. Initial cluster centers where chosen by ran-
domly selecting k data points. If the number of points in cluster h is < τh,
then a new set of initial cluster centers are chosen. This is repeated until the
thresholds τh, h = 1, . . . , k are satisfied or until 50 sets of initial centers have
been tried. The k-means Algorithm 9.2 is applied. If, at convergence, the τh

thresholds are not satisfied, the entire initialization procedure is repeated (at
most 10 times). The initial centers used for k-means are then also used to
initialize constrained k-means. With this initialization strategy, for all values
of k and τh > 1 tested, k-means often converges with clusters violating the τh

constraints.
The second set of experiments was run over a higher-dimensional dataset

derived from web-browsing behavior to a large internet portal. The browsing
history for a group of 10144 randomly selected users to 300 of the most popular
news category stories was generated. This dataset can be viewed as 10144 data
points in R

300. We refer to this dataset as the “Web Dataset”. In order to
handle this larger dataset, we modify our original MATLAB code and utilize
MOSEK 4.0 as the linear programming solver [18], which can be seamlessly
integrated with MATLAB.

In addition to running k-means and constrained k-means algorithms, we
also report results from k-median [10] and constrained k-median algorithms by
using the 1-norm distance metric as mentioned in Section 9.2. The k-median
clustering algorithm uses the median value in updating the cluster centers
instead of using the average in the case of the k-means algorithm. Since we
used a larger dataset, we modified the definition of the empty cluster to be
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TABLE 9.1: k-means and Constrained k-means Results on Web
Dataset for k=20

k-means Constrained k-means
τ Objective Time No. of Empty Objective Time

(± σ) (Sec.) Clusters (± σ) (± σ) (Sec.)
10 396037 ± 59297 104.9 8.7 ± 1.89 574555 ± 13209 154.2
20 424178 ± 31575 102.1 8.5 ± 1.72 661215 ± 6367 140.5
30 377261 ± 59321 90.1 9.3 ± 2.31 710156 ± 8086 154.9

TABLE 9.2: k-median and Constrained k-median Results on
Web Dataset for k=20

k-median Constrained k-median
τ Objective Time No. of Empty Objective Time

(± σ) (Sec.) Clusters (± σ) (± σ) (Sec.)
10 37783 ± 539 77.2 2.8 ± 1.48 38091 ± 1166 137.62
20 37989 ± 709 69.2 1.9 ± 1.79 38389 ± 1258 135.90
30 38140 ± 748 70.6 2.0 ± 1.49 38811 ± 878 133.46

one with 5 or fewer points. We ran the experiments on a Pentium M 1.60 GHz
notebook with 768 MB of memory running under the Windows XP operating
system. For brevity, we only set k equal to 20. We set τ to be 10, 20 and 30.
Initial cluster centers were randomly picked from the dataset. Thus, the initial
starting point consists of clusters that contain at least 1 point. At algorithm
termination, clusters containing 5 or fewer points are considered “empty” per
the modified definition mentioned above. For each τ value, we ran 10 random
realizations of the dataset. We report average values over these 10 runs in the
following tables.

Average objective values and times in seconds for both regular and con-
strained clustering methods and also number of empty clusters are reported
for k-means and k-median clustering in Tables 9.1 and 9.2 respectively. Corre-
sponding standard deviations are reported after the ± operator. Notice that
the k-means clustering algorithm ends up with approximately 9 empty clusters
on average out of 20 initial clusters. On the other hand, k-median clustering
algorithm results in around 2 empty clusters on average. Changing τ does
not seriously affect the running time for both constrained clustering meth-
ods. Although the objective values of both constrained and regular k-median
methods do not differ, we see a significant change in constrained k-means
probably due to the empty or near empty clusters found in regular k-means
methods. From the comparisons of standard deviations of the objective values
from both regular and constrained k-means algorithms, we can conclude that
although standard k-means algorithm has lower average objective values, it
has higher variations. This result directly indicates the volatility of the local
solutions of the regular k-means algorithm.

These results may be a result of the following observations: i) a data point
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might be closer to any other data point as the dimensionality of the space
becomes very large; ii) the k-means algorithm is more prone to be affected
by “outliers” in the dataset than the k-median algorithm since k-means min-
imizes the 2-norm squared distance, whereas k-median minimizes the 1-norm
distance [7].

9.5 Extensions

Around the same time that our earlier work [8] was published, Wagstaff
and Cardie proposed using pairwise constraints in clustering problems [20].
More specifically they proposed the usage of must-link and cannot-link types
of constraints in a clustering framework. From an optimization point of view,
it might be more challenging to add pairwise constraints into clustering prob-
lems in general since it might jeopardize convexity and the smoothness of
the solution. The work of Wagstaff and Cardie was later applied to GPS
lane finding problem [21]. Another constraint type was first studied in [2].
The aim in [2] was to utilize a sampling based scalable clustering algorithm
with balancing constraints to produce balanced clusters which is important
in some commercial applications. Chapter 8 of this book is also on balancing
constraints. In this section, we basically review some prior work and develop
certain optimization models to tackle with new types of constraints.

Kleinberg and Tardos proposed some linear programming relaxations of
the metric labeling problem in [14, 15]. Specifically they used pairwise rela-
tionships in assigning k labels (classes) to each of n objects. In their
approach to metric labeling problem, they utilized a Markov Random Fields
framework [14, 15].

We can easily extend their uniform metric labeling formulation to a 2-norm
cost function as follows in the following optimization model. Approximations
to Kleinberg and Tardos’ model for the general metrics are studied in [11].

minimize
T

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)
+

∑
(u,v)∈X

w(u, v) · 1

2

k∑
h=1

|Tu,h − Tv,h|

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.
(9.5)

The major difference in Problem 9.5 with the original clustering problem
defined in Problem 9.2 is the fact that there is a cost w associated with pairing
two objects u and v. Technically, we can easily incorporate both must-link
and cannot-link pairwise constraints with an appropriate cost structure with
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this formulation. Intuitively, appropriate positive terms should be assigned
to w(u, v)’s. Assigning a negative value would make the objective non-convex
and more difficult to solve with ordinary linear programming approach. Since

each point is assigned exactly to one cluster, the term w(u, v)· 12
k∑

h=1

|Tu,h−Tv,h|
will be equal to 0 when both points are assigned to the same cluster and non-
zero otherwise.

Although a minimum might exist, an algorithm like Algorithm 9.2 may not
be sufficient to find a solution and the convergence of such an algorithm may
not be guaranteed. Therefore a near zero cost value should be assigned to w for
a cannot-link pairwise relationship (constraint). We can assign prohibitively
large cost values for the must-link constraints. In this case, we can argue that
there exists an extreme point solution, yet we need to show that Algorithm 9.2
converges. However, a more elegant way of introducing constraints is needed.
In the following model, we first introduce our constraints on the number of
points assigned to each cluster to Kleinberg and Tardos’ model proposed in
[14, 15].

minimize
T

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)
+

∑
(u,v)∈X

w(u, v) · 1

2

k∑
h=1

|Tu,h − Tv,h|

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

Certainly, pairwise relationships can be introduced to Markov random fields
models in various ways. Basu et al. used hidden Markov models in [3, 4] in
a probabilistic way to introduce such constraints. In the following model,
we introduce such pairwise assignment constraints in our mathematical pro-
gramming model. Notice that cannot-link constraints can be added without
violating the convexity. However care is needed for the must-link type con-
straints since they are in the form of absolute value that is non-convex.
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minimize
T,ε

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)
+

∑
(u,v)∈X

w(u, v) · 1

2

k∑
h=1

|Tu,h − Tv,h|

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,

k∑
h=1

εi,j,h = 0, ∀ i, j ∈ C=,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.
(9.6)

In the previous model, Problem 9.6, we basically introduce a new variable,
ε, for the each must-link constraint. From a practical point of view, Problem
9.6 needs to be solved by introducing a regularizer as given below model.
Our aim in introducing the regularizer, ρ, is just to simplify the objective
function and speed-up the solution. By doing this, we basically soften the
must-link constraints. They are no longer hard constraints meaning that
some violations of this type of constraints are permitted given that they are
below certain associated costs.

minimize
T,ε

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)
+ ρ

∑
(i,j)∈C=

k∑
h=1

εi,j,h

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,
Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.7)

After removing the cost function associated with w(u, v) from Problem
9.6 and introducing a regularizer in Problem 9.7, the resulting mathematical
programming model has become numerically more stable and an algorithm,
such as Algorithm 9.2, can be devised to solve this problem. Considering the
cannot-link constraints, such an algorithm will converge. By adding trans-
shipment nodes, we can show that the problem is equivalent to MCF. Thus
we will have an integer solution i.e. the integrality constraints are satisfied
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too. On the other hand, considering the must-link constraints, we can show
that the algorithm will converge but we no more have the integrality.

Our proposed framework in this section enables us to introduce new con-
straints to the clustering problem in general. Assume that we face a situation
that point xi must be in the same cluster with point xj or in the same cluster
with point xg but not in the same cluster with both points xj and xg. This
situation might arise in analyzing social networks data. Imagine one chooses
to be friend of another person from among two persons but cannot be friend
of both persons at the same time. We call this type of constraints as OR type
constraints and denote it by COR. We show in the following model how to
represent such constraints.

minimize
T,ε

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)
+ ρ

∑
(i,j)∈C=

k∑
h=1

εi,j,h

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,

k∑
h=1

|Ti,h − Tj,h| + |Ti,h − Tg,h| ≤ 1, ∀ i, j, g ∈ COR,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.8)

In Problem 9.8, COR constraints are convex. However, we can still propose
a relaxed form. Since COR constraints are also convex, the algorithm to find
a solution for this problem will converge but we will not have the integrality.

Adding must-link and cannot-link types of constraints into the clustering
model may decrease the quality of solution. Unexpected or even unwanted re-
sults may occur. In [12], two measures, namely informativeness and coherence
are proposed to understand the underlying effects of adding constraints to the
clustering problem. Such measures surely help to evaluate the importance of
the semi-supervised approach through constrained clustering. Certain types
of clustering approaches can be deployed for the transduction problem as well
such as graph cut methods. However, it is reported that after deploying such
methods for the two-class transduction problem, the algorithm might very
well result in one very small cluster [13]. Such results may require a new type
of constraint, precisely the minimum number of labeled points falling into
each cluster. We can readily add such constraints to above Problem 9.8 as in
the following formulation.
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minimize
T,ε

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)
+ ρ

∑
(i,j)∈C=

k∑
h=1

εi,j,h

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k,

∑
i∈l

Ti,h ≥ πh, h = 1, . . . , k,

Ti,h + Tj,h ≤ 1, ∀ i, j ∈ C�=, h = 1, . . . , k,
−εi,j,h ≤ Ti,h − Tj,h ≤ εi,j,h, ∀ i, j ∈ C=,
Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

To simplify the model, we can just omit the other types of constraint and
just focus on the minimum number of points (minimum capacity) for the each
cluster whether labeled or unlabeled. Following formulation is provided for
that reason.

minimize
T

n∑
i=1

k∑
h=1

Ti,h ·
(

1

2
‖xi − µh‖2

)

s.t.

k∑
h=1

Ti,h = 1, i = 1, . . . , n,

n∑
i=1

Ti,h ≥ τh, h = 1, . . . , k,

∑
i∈l

Ti,h ≥ πh, h = 1, . . . , k,

Ti,h ≥ 0, i = 1, . . . , n, h = 1, . . . , k.

(9.9)

We can easily show that Problem 9.9 is equivalent to MCF by adding trans-
shipment nodes. Therefore solution will converge and we will have the inte-
grality constraints satisfied. From a practical point of view, Problem 9.9 is
simple yet has potential to be very useful in the area of semi-supervised learn-
ing.

9.6 Conclusion

The k-means algorithm can be extended to insure that every cluster contains
at least a given number of points. Using a cluster assignment step with
constraints, solvable by linear programming or network simplex methods, can
guarantee sufficient population within each cluster. A surprising result was
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that constrained k-means was less prone to local minima than traditional
k-means. Thus adding constraints may be beneficial to avoid local minima
even when empty clusters are permissible. Constrained clustering suggests
many research directions. Robust clustering can be done by simply adding
an “outlier” cluster with high fixed distance that gathers “outliers” far from
true clusters. Constraints forcing selected data into the same cluster could be
used to incorporate domain knowledge or to enforce consistency of successive
cluster solutions on related data.

We show in this chapter that it is feasible to solve constrained clustering
problems by using efficient linear programming based algorithms even for the
large datasets. We extend our solution to solve the constrained k-median
algorithm. Results from real datasets are reported.

In addition to our original constraints on the number of points assigned
to each cluster, we propose some extensions to represent pairwise assignment
constraints via mathematical programming models in this chapter. Further
investigations are still needed for these extensions to prove that they converge
and the results satisfy the integrality constraints. Notice that such integrality
constraints are expected to be satisfied without using more complex mixed-
integer models. Our aim in this chapter was to show that linear programming
and network simplex models can be efficiently used in solving constrained
clustering problems.
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