
On Heterogeneous Network-on-Chip Design Based on
Constraint Programming

Ayhan Demiriz
Sakarya University,

Sakarya, 54187, TURKEY
ademiriz@gmail.com

Nader Bagherzadeh
University of California Irvine,

Irvine, CA, 92697, USA
nader@uci.edu

ABSTRACT
Core mapping and application scheduling problems coupled
with routing schemes are essential design considerations for
an efficient Network-on-Chip (NoC) design. This paper dis-
cusses heterogeneous NoC design from a Constraint Pro-
gramming (CP) perspective using a two-stage solution. Given
a Communication Task Graph (CTG) and subsequent task
assignments for cores, cores are allocated to the best possi-
ble places on the chip in the first stage in order to minimize
the overall communication cost among cores. We then solve
the application scheduling problem in the second stage to
determine the optimum core types from a list of technolog-
ical alternatives and to minimize the makespan i.e. time to
complete all tasks. As a design extension, surface area con-
straint can be introduced to the underlying problem. The
paper reports results based on real benchmark datasets from
the literature.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Se-
quencing and scheduling; G.1.6 [Optimization]: Constrained
optimization; F.4.1 [Mathematical Logic]: Logic and con-
straint programming

1. INTRODUCTION
NoC design paradigm has been proposed to overcome tra-

ditional chip design limitations that have become increas-
ingly eminent under the reality of single chips made of large
number of cores. Such technology requires solutions to chal-
lenging general problems as highlighted in [6]: application
modeling and optimization; NoC communication architec-
ture and optimization; NoC communication architecture eval-
uation; and NoC design validation and synthesis. Design-
ing an NoC system requires handling persistent optimiza-
tion that often demands finding the best tradeoff between
conflicting objectives and constraints.

Heterogeneous designs may be more desirable for their
utility to run various types of computational tasks efficiently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
NoCArc’13, December 08 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2370-3/13/12 ...$15.00.
http://dx.doi.org/10.1145/2536522.2536528.

by having cores that can dynamically adjust their voltages
(i.e. dynamic voltage-frequency scaling - DVFS problem)
and/or can be set to run at certain pre-optimized voltage lev-
els (i.e. voltage-frequency island - VFI problem) to use more
efficiently the resources available such as power, area/surface
and bandwidth etc. [6, 8]. Core mapping and application
scheduling [5] problems are essential optimization problems
for designing NoC systems whether they are homogeneous
or heterogeneous [9]. In our earlier work [3], a Constraint
Programming (CP) based approach was proposed success-
fully to determine optimum core mapping and application
scheduling at transmitted packet level. The proposed model
in [3], CPNoC was designed to carry out the optimization
task for the homogeneous NoC systems.

This paper discusses heterogeneous NoC design from a
Constraint Programming (CP) perspective using a two-stage
solution as in [3]. Given a Communication Task Graph
(CTG) and subsequent task assignments for the cores, CPU
cores are allocated to the best possible places on the chip
in order to minimize the overall communication cost among
cores. Then, the application scheduling stage is run to de-
termine the optimum core types from a list of technolog-
ical alternatives and to minimize the makespan i.e. time
to complete all computation tasks on CTG. Heterogeneous
designs may involve optimization problems that have con-
flicting terms in their objective functions. To accommodate
solutions for the heterogeneous designs, our formulation of
CPNoC in [3] is extended in this paper to have a multi-
objective function, constraints and new decision variables
to determine the best core composition i.e. percentages of
various core types on the chip.

The rest of this paper is organized as follows. In Sec-
tion 2, the proposed method and underlying CP model are
presented. Section 3 gives the experimental results on real
benchmark datasets from [4]. In this section, we first present
results for homogeneous architecture then results from het-
erogeneous architecture are presented. In our experiments,
both 4 × 4 and 8 × 8 architectures are utilized. Section 4
introduces the related literature on heterogeneous NoC de-
signs. The paper is concluded in Section 5.

2. PROPOSED OPTIMIZATION MODEL
Assuming that a set of cores is organized as a 2-D mesh of

dimensions n = m×m, each core can be labeled according to
its position on the mesh (as an x and y coordinate pair) and
has the capability of executing several tasks of an application
in tandem. The buffer size is assumed to be unconstrained
(i.e. infinite buffer size). Any communication link can only



be occupied by a single packet at any given time without any
limit on the bandwidth size. The communication links are
bi-directional. In other words, any particular link between
two routers can be considered as a separate link (resource)
in each direction.

Given a CTG, G(T , E) where E represents the communi-
cation requirements and precedence constraints for the tasks
T with corresponding computation times, core mapping and
scheduling problems are tackled in order to assign cores
to optimum locations on the target network topology and
then to schedule tasks to minimize the makespan. The first
part of the problem solved in Stage I is an instance of the
Quadratic Assignment Problem (QAP) and can be formu-
lated as a CP model as shown in Eq. 1 (see [3]).

minimize
π

n∑
i,j=1

fijdπiπj

subject to
alldifferent(π1, . . . , πn),
πi ∈ {1, . . . , n}, i = 1, . . . , n.

(1)

where f and d are flow and distance matrices (parameters)
respectively. In other words, the parameter d is the Man-
hattan distance (cost) between all the possible pair combi-
nations of the cores on the mesh and it is the cost of trans-
ferring data among cores which is a function of the rout-
ing algorithm. Deterministic routing algorithms can easily
be incorporated to the optimization problem on hand and
can help in finding the optimal application task schedule
by utilizing d. The transfer cost based on the XY rout-
ing algorithm is proportional to the Manhattan distance
which can be calculated between points a and b on a grid
as: TCab = |xa−xb|+ |ya−yb|. Parameter f represents the
amount of data to be transferred between each core which is
given as part of CTG. Considering all these parameters, the
objective function in Eq. 1 can be considered as a represen-
tation of dynamic power. In Eq. 1, permutation variables
πi = j, for i, j = 1, . . . , n. correspond to the location of
cores. alldifferent constraint enforces unique assignment
for each core. In other words, each of the n variables should
be assigned a unique value between 1 and n.

Stage I of our implementation can be conducted as in our
early work [3] by solving Eq. 1. The optimal solution found
in Stage I can be considered as the best floor-planning as-
signment that does not consider any resource and task prece-
dence constraints. Resources in this context could be consid-
ered as bandwidth, power, surface area as well as tempera-
ture. Such constraints can be introduced to the optimization
problem in the second stage that involves task scheduling
with routing.

As in [3], a conventional objective function for the second
stage can be represented as following:

minimize
ti∈T

max(EndOf( ti )) (2)

where EndOf( ti ) represents the completion time of task
ti ∈ T . Considering the variable types available in CP re-
lated to modeling the scheduling problems, we can incorpo-
rate interval and sequence variables in our formulation of
Stage II. Basically, tasks to be scheduled can be represented
as interval variables. Therefore, they are defined on time-
line and they are associated with starting and end times
which are practically continuous values. The sequence vari-
ables, on the other hand, can be utilized to model (finite)

resources (e.g. communication channels that transfer data)
and they are coupled with related jobs (e.g. transferring the
data). To complete our model, we need to incorporate prece-
dence constraint with suitable CP modeling tools such as
endBeforeStart, endBeforeEnd, endAtStart, and endAtEnd

constraints. To give an example, endBeforeStart constraint
requires a job ti to end before the other job tj starts. Thus,
job ti has been completed before job tj is started. In order
to model (finite) resources by utilizing sequence variables
in CP modeling paradigm, we need to associate jobs to be
scheduled with (finite) resources (i.e. sequence variables).
Considering all these CP modeling tools, we can construct
the following CP model to solve scheduling problem as fol-
lows:

minimize
ti∈T ,pi∈P,`∈L

max(EndOf( ti ))

subject to
sizeOf( ti ) = JD( ti ), forall ti ∈ T
endBeforeStart( ti, tj ), forall ti � tj ∈ T
endBeforeStart( pi, pj ), forall pi � pj ∈ P
endBeforeStart( ti, pj ), forall ti � pj ∈ T , P
endBeforeStart( pj , ti ), forall pj � ti ∈ T , P
noOverlap(L ) .

(3)

where � is precedence operator that indicates precedence
relation, interval variables ti ∈ T and pi ∈ P represent re-
spectively computation tasks given in CTG ( T depicts the
set of all tasks) and data transfer jobs (packet transmission)
that are generated based on the results of core mapping
in Stage I and the underlying routing scheme (XY routing
with Wormhole switching in our implementation). sizeOf

(length) constraint enforces computation task times to be
the same as the job durations, JD is given to optimization
model as a parameter (i.e. constant) in clock cycles and
is determined according to both CTG and the architecture.
In addition to precedence constraints constructed based on
CTG for computational tasks, there need to be constraints
for coupling computational tasks and communication jobs.
Basically, data transmission to the next computation node
can only start after the current task has been completed.
The next computation task can only start after all the nec-
essary data transfer has been completed. The sequence vari-
ables, ` ∈ L, are used for representing the bi-directional data
channels that can serve only single flits at any given time.
All these particular variables should be associated with re-
lated packet transmission jobs in P . noOverlap constraint in
Eq. 3 practically enforces an orderly job sequencing (packet
transmission) of data channels. Therefore, none of the data
transmission jobs at flit level overlaps with any other data
transmission job on the same data channel excluding oppo-
site directional flows.

The problem aforementioned in Eq. 3 is valid for a ho-
mogeneous architecture as computation times of tasks at all
cores are considered as same across the chip. One way of
modeling heterogeneous architecture is to introduce binary
decision variables for each core and technologically alterna-
tive core types (e.g. FPGAs, ASICs and GPUs [2],[1],[11]).
Assuming that there are nc different core types, we can intro-
duce n× nc binary decision variables into scheduling model
given in Eq. 3 to determine optimum core composition. No-
tice that any solution would prefer fastest cores by default
if the objective function in Eq. 3 is not changed. Even con-
sidering only the budget constraint, it may not be feasible
to choose all of the cores from the fastest available technol-



ogy. Therefore, we need to introduce a penalty term to the
objective function for the alternative core types as follows.

minimize
ti∈T ,pi∈P,`∈L,q∈Q

max(EndOf( ti ))
λ

+

nc∑
k=2

σk
n

n∑
j=1

qjk

subject to
nc∑
k=1

qjk = 1, j = 1, . . . , n

sizeOf( ti ) =

nc∑
k=1

αk

n∑
j=1

qjk JD( ti ), forall ti ∈ T

endBeforeStart( ti, tj ), forall ti � tj ∈ T
endBeforeStart( pi, pj ), forall pi � pj ∈ P
endBeforeStart( ti, pj ), forall ti � pj ∈ T , P
endBeforeStart( pj , ti ), forall pj � ti ∈ T , P
noOverlap(L )
qjk ∈ {0, 1}, j = 1, . . . , n; k = 1, . . . , nc.

(4)
where λ is a normalization coefficient which can be set to the
objective value of a solution to Eq. 3, σks are weighting coef-
ficients between 0 and 1 that adjust the preference of certain
technologies to others. Notice that qjk is a binary decision
variable and takes a value of 1 if kth technological alternative
is chosen for the jth core otherwise it is 0. The objective
function of Eq. 4 is a weighted combination of makespan
and core compositions i.e. percentages of various types of
cores. Since there are nc technological alternatives, one of
them is linearly dependent to the rest. Alternative 1 can be
arbitrarily chosen as dependent, for the sake of argument.
Therefore, the index of technological alternatives (k) for de-
cision variable qjk starts at two. This objective function is
a form of multi-objective function. Moreover, this multi-
objective function enables optimizing the conflicting terms
by finding the best tradeoff between normalized makespan
and the core composition. Note that it may be undesirable
to prefer faster cores in order to reduce the makespan from
some design perspectives such as budget, space and power.

First constraint in Eq. 4 enables the assignment of only
one core type to a single place (unit) on chip. Second con-
straint determines the computation time of the task ti based
on coefficients αks. In other words, depending on technolog-
ical properties of core types (αk), computation times may
vary (below or above) from a baseline time (JD(ti)). This is
inline with the results from [1, 11] since the speeds of various
alternative technologies can be summarized as a function of
power, and area. The remaining constraints are the same
as in Eq. 3 except binary value constraints for the decision
variables qjk.

3. APPLICATION ON REAL BENCHMARK
DATASETS

We have employed real application benchmark datasets
to evaluate the mapping and the scheduling algorithm in
this section. Multi-Constraint System-Level (MCSL) bench-
mark suite [4] provides a set of real applications where each
application composes multiple tasks and traffic data pat-
terns between these tasks. MCSL benchmark records the
data traffic for different mesh network sizes and measures
the execution time for each task in the application. Most
of the architectural settings are borrowed from [3], excep-
tions are specified as needed. Results from both homo-
geneous and heterogeneous architectures are presented in

Table 1: MCSL Benchmark Suite Applications

Application Number of Number of
Tasks Comm. Links

R-S code encoder 248 328
R-S code decoder 278 390
ROBOT 88 131
SPEC95 FPPPP 334 1145
SPARSE 96 67
H.264 video decoder 2311 3461

this section. The CP models are implemented by using
IBM ILOG OPL Studio, which is available free of charge
to the academicians at IBM Academic Initiative web site at
http://tinyurl.com/cu5txlg.

Table 1 shows the applications provided by MCSL which
were used as data sets of our mapping and scheduling al-
gorithms. Table 1 also shows the number of tasks for each
application as well as the number of communication links.
The files obtained by MCSL benchmark include task execu-
tion times, the details of communication links between task,
and the amount of data for each communication link. The
execution time is represented by clock cycles while the data
is represented by number of words on each link. Words are
32-bit wide which corresponds to one flit. Each packet con-
tains one header flit and eight data body flits. Between two
network nodes, header flits require three clock cycles while
a data flit requires only one clock cycle.

For each different application in MCSL Benchmark, we
generated 10 different random sets (all the model and data
files are available at http://tinyurl.com/cjseuuz) of the
execution times and the traffic patterns according to distri-
butional parameters provided in the benchmark data specif-
ically the files with ‘STP’ extension [4]. Two different sizes
of the mesh architecture were utilized in our experiments:
4×4 and 8×8. The packet size was set to be eight for all the
applications except H.264 which was set to be 64 due to the
computational complexity caused by the small packet size
in Stage II.

3.1 Homogeneous Architecture
Table 2 presents the results from experiments on 4×4

mesh architecture by solving Eq. 3. All the results were av-
eraged over ten different random realizations and standard
deviations were also reported after the ± operator. The to-
tal CPU time limit was set to be 1000 seconds in all the
experiments for the application mapping model (i.e. Stage
I) except H.264 which was set to 3600 seconds. We set the
time limit to 1600 seconds in Stage II (i.e. the application
scheduling model). We reported the objective values and
number of different feasible solutions in both Stage I and
Stage II CP models. None of Stage I models (i.e. solving
Eq. 1) resulted in an optimal solution. Therefore, reported
results are based on the best solutions found until the run
time limit was reached. However, all Stage II models pro-
duced the optimal scheduling except for the R-S32DEC and
H.264 applications. We also reported CPU times for Stage
II which differ from the run time limits as most schedul-
ing problems were solved to the optimality within seconds.
The most challenging problem was the application schedul-
ing part of the H.264 benchmark. To give an idea about the
complexity, a representative problem might have over 67k
variables and over 79k constraints for the H.264 benchmark



Table 2: MCSL 4x4 Mesh Results (Average±Std.Dev.)

Stage I Stage II
Application Objective Num.of Sol. Objective Num.of Sol. Run Time(sec.) Latency

R-S32ENC 1324±0 7±0 1821±18.73 1.6±0.5 0.71±0.26 5±0.01
R-S32DEC 2208±0 9±0 2961±151 3.8±1.8 1600±0 12.37±0.45
ROBOT 10169±120 19±5 92818±1914 1±0 1.59±0.35 7.91±0.07
FPPPP 161021±914 15.7±3.68 85371±5914 1.6±0.7 385±443 149.4±6.8
SPARSE 22206±365 19.5±5 19982±1101 1.2±0.4 4.3±2.24 14.49±3.1
H.264 1501505±3007 19±2.36 19532265±727341 1±0 23335±597 632±90

Table 3: MCSL 8x8 Mesh Results (Average±Std.Dev.)

Stage I Stage II
Application Objective Num.of Sol. Objective Num.of Sol. Run Time(sec.) Latency

R-S32ENC 1380±0 41±0 1752±18.64 2.6±0.5 1.9±0.82 5±0.03
R-S32DEC 4020±0 14±0 2959±150 12.6±1.7 3200±0 17.38±0.82
ROBOT 9808±299 50±9 92452±1871 1±0 1.43±0.25 7.80±0.22
FPPPP 304282±3506 22.8±6.66 85317±5913 1.3±0.7 499±502 196.4±9.4
SPARSE 19125±495 58.1±8.8 20012±1101 1.2±0.4 7.1±3.6 17.73±5.7

data in Stage II. Table 2 also reports the latencies in clock
cycle units.

Similarly, Table 3 presents results from experiments on the
8×8 mesh homogeneous architecture. However, the results
from H.264 were omitted as the second stage becomes too
complex and results in memory problems because there are
around 137k variables and 178k constraints. The CPU time
limits were set to twice as much as the ones in the 4×4
experiments. Since the CPU time limits were higher, the
CP solver was able to find more feasible solutions in the
first stage (application mapping). However, the CP solver
was not able to guarantee that Stage I results were optimal
as for the 4×4 experiments.

A representative sample of the progression of the objective
value at Stage I is given in Figure 1. The x-axis represents
the number of branches that are generated thus far. Basi-
cally, the CP solver was able to sift through approximately
700k branches within CPU time limit which is 2000 seconds
for the 8×8 experiments. Each objective value corresponds
to a unique solution. At the end of the run, the CP solver
reports the best solution found within the CPU time limits.

3.2 Heterogeneous Architecture
Applicability of Eq. 4 has been tested by a new set of

experiments in this part of the paper. Again, MCSL bench-
mark suite has been used in this set of experiments. How-
ever, H.264 instance has been completely dropped because
of the computational complexities. In contrast to Eq. 3,
Eq. 4 has additional parameters such as λ, σ and α to be
determined ahead of running optimization.
λ is used for normalizing the objective term related to

makespan i.e. the completion time of all tasks on CTG. The
parameter σ is used for penalizing composition of the cores.
Assuming that one of the core type is more preferable than
the rest, we can practically penalize the usage of the remain-
ing core types in the composition of the chip. Notice that
σk for k = 2, . . . , nc should be specified for each technolog-
ical alternative in our formulation. By using a σk closer to
1, we can practically penalize more the usage of that par-
ticular core type within the composition of chip. In our
experiments, three different technological alternatives have

been used. Hypothetically, we can think of these core types
as Slow, Regular, and Fast. In our experiments, σ2 and σ3

were set to 0.25 and 0.5 respectively. Technically, budgetary
constraints can be easily used for determining parameter σ.
Parameter α is used for assessing the job duration times of
technological alternatives. α = [1.4, 1, 0.7] is chosen for our
experiments. Expressly, it takes 1.4 times more for running
computation tasks on a slow core type than the regular core
type and it takes 30% less time to run tasks on fast core
type than the regular core type. Alternatively Job Duration
times (JD) could have been picked differently for each task
on different core types. However, the parameter α is used
for its simplicity.

Figures 3 and 5 report composition of cores yielded by
experiments to solve Eq. 4 for 4× 4 and 8× 8 architectures
respectively. These figures practically show percentage of
each core type in CPU core composition. Basically, fast
cores are preferred for the 4 × 4 architecture in almost all
datasets except R-S32ENC. This indicates that bandwidth
is responsive and level of parallelization responds positively
in increasing speed of the cores. On the other hand, slow
cores are preferred for the 8×8 architecture. This underlines
that there is no need to utilize faster cores as the level of
parallelization is very high and these cores can wait for the
data transmissions to be completed in most cases. Therefore
we can conclude that this particular architecture is network-
bandwidth sensitive [7]. Table 4 reports completion times in
clock cycles for all applications in MCSL benchmark. The
results are averaged on 10 realizations of the datasets (appli-
cations). The values of parameter λ used in the experiments
are also listed in Table 4. Notice that parameter λ is chosen
by considering the results given by Tables 2 and 3 except
for application FPPPP. As a bandwidth parameter, 64 bit
packet size is used for FPPPP to reduce the number of de-
cision variables and constraints for the CP model to solve
Eq. 4 - instead of 8 bit used for rest of the applications (see
[3] for architectural parameters). It can be observed from
Table 4 that completion times are shortened significantly in
most cases for both 4 × 4 and 8 × 8 architectures. Even
if most of the cores are formed by slow ones, the remain-
ing fast cores on the chip can speed up the computational



Figure 1: Progression of Objective Value at Stage
I of SPARSE Dataset on 8× 8 Architecture

Figure 2: Progression of Object Value of Stage I
MIP Model on SPARSE Dataset on 4× 4

Architecture

0

0.2

0.4

0.6

0.8

1

1.2

FPPP R32DEC R32ENC ROBOT SPARSE

4x4 CPU Assignment

PerSlow PerRegular PerFast

Figure 3: Composition of Core Assignment on
4× 4 Architecture

0

0.2

0.4

0.6

0.8

1

1.2

FPPP R32DEC R32ENC ROBOT SPARSE

4x4 CPU Assignment with Area Constraint

PerSlow PerRegular PerFast

Figure 4: Composition of Core Assignment on
4× 4 Architecture with Area Constraint

Table 4: Completion Times in Clock Cycles for
Heterogeneous Architectures

4× 4 Completion Times 8× 8 Completion Times
Application λ Eq. 4 Eq. 4 w/area Eq. 4 Eq. 4 w/area

R-S32ENC 1800 1452 1452 1466 1466
R-S32DEC 3000 2138 2138 2151 2151
ROBOT 92000 66675 66675 65082 65057
FPPPP 60000 59853 59853 59783 59773
SPARSE 20000 14290 14259 14294 14289

tasks significantly. According to results from [1] and [11],
the functional relationship between cores’ speed and area
usage can be constructed easily. However, we can introduce
a parametric constraint to represent surface/area usage on
the chip for simplicity. In most of the design problems, sur-
face/area usage is an important factor and Eq. 5 defines a
constraint to consider the area limitation. By picking ωk
for k = 1, . . . , nc and Ω appropriately, we can define a form-
factor for various core types. ω = [0.9, 0.8, 0.65] and Ω = 0.8
were chosen in our experiments. Experiments by solving
Eq. 4 with area constraint (i.e. Eq. 5) were also conducted
on MSCL benchmark datasets. Results are reported in Fig-
ures 4 and 6 and Table 4. When compositions of the chips

within each architecture are compared, there is almost no
change for 4 × 4 architecture (see Figures 3 and 4). This
means that solutions to Eq. 4 already satisfy the area con-
straint for the 4×4 architecture. However, introducing area
constraint changes the solutions for 8× 8 architecture.

nc∑
k=1

ωk
n

n∑
j=1

qjk ≤ Ω (5)

4. RELATED WORK
A two-stage solution to core mapping and application

scheduling problems was also proposed in [9]. The solution is
reached by running iteratively these two consecutive stages
(master and sub-problems). In each iteration, a new cut was
introduced to the master problem in order to get closer to the
optimal solution and satisfy the feasibility of scheduling. In
[9], the master problem (core mapping) is modeled by inte-
ger programming and sub-problem (scheduling) is modeled
by CP. Since there are no task deadlines in our model, it is
always feasible to find a solution to the scheduling problem
in our case. On the other hand, our scheduling model is
finer-grained than the one proposed in [9].

In contrast to DVFS, many implementations aim to solve
the static voltage-frequency island problem to optimize de-
sign of heterogeneous NoC systems in order to run special



0

0.2

0.4

0.6

0.8

1

1.2

FPPP R32DEC R32ENC ROBOT SPARSE

8x8 CPU Assignment

PerSlow PerRegular PerFast

Figure 5: Composition of Core Assignment on
8× 8 Architecture

0

0.2

0.4

0.6

0.8

1

1.2

FPPP R32DEC R32ENC ROBOT SPARSE

8x8 CPU Assignment with Area Constraint

PerSlow PerRegular PerFast

Figure 6: Composition of Core Assignment on
8× 8 Architecture with Area Constraint

applications [8]. A heterogeneous NoC design was also pro-
posed in [2] by implementing core mapping as a 2D-packing
problem and by finding a heuristic solution to underlying
optimization problem. Power usage has also been taken
into consideration for scheduling phase in [2]. Network-
bandwidth and latency-sensitive designs can be considered
for heterogenous systems [7]. Our experimental results indi-
cate that slow cores may be utilized in larger tiles. Latency-
sensitive case has been tackled by blending CPU cores and
GPUs to solve DVFS problem in [10]. The proposed method
in [10] delays some GPU packets by routing through non-
minimal paths without compromising the performance.

5. CONCLUDING REMARKS
A CP-based two-stage model is proposed to solve the core

mapping and the application scheduling problems for het-
erogeneous NoC architectures. The major advantage of us-
ing CP is the clarity and understandability of the models.
We successfully experimented our model on various MCSL
benchmark datasets. Surface/area constraint has been in-
troduced to our formulation. It has been practically shown
that similar constraints for power, temperature etc. can eas-
ily be implemented in CP framework of heterogeneous NoC
architectures.

6. REFERENCES
[1] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai.

Single-chip heterogeneous computing: Does the future
include custom logic, fpgas, and gpgpus? In
Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO ’43, pages 225–236, Washington, DC, USA,
2010. IEEE Computer Society.

[2] D. Demirbas, I. Akturk, O. Ozturk, and U. Güdükbay.
Application-specific heterogeneous network-on-chip
design. The Computer Journal, 2013.

[3] A. Demiriz, N. Bagherzadeh, and A. Alhussein.
Cpnoc: On using constraint programming in design of
network-on-chip architecture. In Parallel, Distributed
and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on, pages
486–493, 2013.

[4] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang,
M. Nikdast, and Z. Wang. A noc traffic suite based on
real applications. In VLSI (ISVLSI), 2011 IEEE
Computer Society Annual Symposium on, pages 66–71,
2011.

[5] M. Lombardi and M. Milano. Optimal methods for
resource allocation and scheduling: a cross-disciplinary
survey. Constraints, 17(1):51–85, 2012.

[6] R. Marculescu, Ü. Y. Ogras, L.-S. Peh, N. D. E.
Jerger, and Y. V. Hoskote. Outstanding research
problems in noc design: System, microarchitecture,
and circuit perspectives. IEEE Trans. on CAD of
Integrated Circuits and Systems, 28(1):3–21, 2009.

[7] A. K. Mishra, O. Mutlu, and C. R. Das. A
heterogeneous multiple network-on-chip design: an
application-aware approach. In Proceedings of the 50th
Annual Design Automation Conference, DAC ’13,
pages 36:1–36:10, New York, NY, USA, 2013. ACM.

[8] Ü. Y. Ogras, R. Marculescu, D. Marculescu, and E. G.
Jung. Design and management of voltage-frequency
island partitioned networks-on-chip. IEEE Trans.
VLSI Syst., 17(3):330–341, 2009.

[9] M. Ruggiero, D. Bertozzi, L. Benini, M. Milano, and
A. Andrei. Reducing the abstraction and optimality
gaps in the allocation and scheduling for variable
voltage/frequency mpsoc platforms. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 28(3):378–391, 2009.

[10] J. Yin, P. Zhou, A. Holey, S. S. Sapatnekar, and
A. Zhai. Energy-efficient non-minimal path on-chip
interconnection network for heterogeneous systems. In
Proceedings of the 2012 ACM/IEEE international
symposium on Low power electronics and design,
ISLPED ’12, pages 57–62, New York, NY, USA, 2012.
ACM.

[11] T. Zidenberg, I. Keslassy, and U. Weiser.
Multiamdahl: How should i divide my heterogenous
chip? IEEE Computer Architecture Letters,
11(2):65–68, 2012.


