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Abstract—NoC technology is composed of switched-based in-
terconnections, where the communication resources are shared.
Therefore, the optimal resource utilization is a crucial consid-
eration for the efficient architecture designs. Application map-
ping and scheduling are important optimization problems. This
paper studies the practicality of the Constraint Programming
(CP) models on NoC architecture designs that effectively use
a regular mesh with wormhole switching and the XY routing.
The complexity of the CP models is compared to the earlier
Mixed Integer Programming (MIP) models. Practical CP-based
mapping and scheduling models are developed and the results
are reported on the benchmark datasets. The results indicate
that mapping and scheduling problems can be solved at near
optimality even under relatively shorter run-time limits compared
to those required by the MIP models.

I. INTRODUCTION

High-performance System-on-Chip (SoC) and Chip Multi-
Processors entail an increase in the number of required Proces-
sor Elements (PEs). However, the communication performance
between these PEs is degraded due to the bus-system limita-
tions. Shared buses become bottlenecks for system communi-
cations as the number of PEs increases. NoC is a new technol-
ogy developed to overcome the limitations of the classical bus
and point-to-point architectures and features more scalability
[1]. NoC technology is based on the switched-based inter-
connections, where the communication resources are shared.
PEs communicate and exchange data via packets using these
shared resources (links, buffers, switches, etc.). These packets
are transferred from a router to another until reaching the final
destination. The NoC topology and the routing algorithms can
greatly influence the resource utilization and the performance
of the NoC systems. The NoC topology describes how these
PEs are connected. Routing algorithms determine how packets
are routed on the network and control how the traffic flows.
Routing algorithms can be classified into adaptive and non-
adaptive routing. In non-adaptive routing, the path that a given
packet passes through is fixed and deterministic. Since packets
follow the same path, this results in packets arriving in-order of
initiation. Whereas in an adaptive routing, the route is not fixed
and can be changed according to some conditions such as the
network traffic status. Adaptive routing is flexible in terms of
choosing alternative routes to route packets. Alternative routes
can be selected according to traffic congestion which leads
to the reduction in the delay and the power metrics. While

the routing algorithms and the network topology influence
the performance of NoCs, mapping applications to the NoC
architecture is the key for the overall performance. Mapping
tasks to the PEs and optimizing NoC traffic among them
determine the actual performance metrics in terms of speed-
up, power consumption, and the degree of parallelization.

Mapping facilitates assigning and placing the IP cores onto
PEs such that an objective function (metric of interest) is
minimized where a particular topology and corresponding
task assignments are given beforehand [2]. Mapping can be
considered as a sub-problem of floor-planning where finding
the optimal topology is also considered as a part of the
problem. However, floor-planning and mapping are practically
equivalent in a regular mesh topology with the identical PEs.
In the rest of the paper, floor-planning and mapping are
used interchangeably. Mapping is related to the Quadratic
Assignment Problem (QAP) [3], [4] which can be posed as
Mixed-Integer Programming (MIP) model and was shown to
be NP-hard [5], [6]. The QAP can generally be defined as
assigning facilities to the locations in order to minimize the
total cost of flowing goods among these locations. Combinato-
rial nature of the QAP makes it challenging by increasing the
number of locations, n. Provided that the mapping problem
has been solved at some optimality level and the IP cores
are assigned to the corresponding PEs, application scheduling
then minimizes the task completion time for the designated
resource constraints such as the PEs and the communication
bandwidth [2]. Together with the PE allocation layout, routing
algorithms define the boundary for finding the optimal or near
optimal solutions for application scheduling problems.

This paper explores the applicability of using the Constraint
Programming (CP) models in finding solutions to the mapping
and application scheduling problems. CP plays an important
modeling role as being at the intersection of traditional mathe-
matical programming and Artificial Intelligence (AI) [7]. The
ability of utilizing intuitive and powerful optimization models
that borrow modeling ideas from mathematical programming
and powerful search strategies from AI makes the CP paradigm
a good candidate to design efficient NoC architectures. Instead
of complicated MIP models used in NoC synthesis earlier in
[5], [6], [8], [9] that do not necessarily return a solution within
the run-time limits, we propose very intuitive and efficient CP
models which can achieve optimal or near-optimal solutions



within relatively very short run-time limits. Contributions of
this paper are the following:

• Application mapping and scheduling problems are suc-
cessfully formulated and modeled by the CP approach.

• Wormhole switching is incorporated to the CP models to
find the optimal application scheduling solutions based
on deterministic XY routing.

• Fifteen different benchmark datasets are generated by
varying the number of tasks, the number of links, and
the communication volume to study the behavior of
the CP models under random realizations of the task
assignments.

• Packet latency is studied under deterministic conditions
to observe its behavior by changing the task complexities.

The remainder of this paper is organized as follows. Section
II introduces the preliminaries of NoC platform and the related
literature on the mapping problems. In Section III, the problem
formulation and the CP-based model are given to present the
advantages of our approach. Section IV contains information
on the experimental setup, further details of the CP models,
and discussions of the results. The paper is concluded and
future directions are highlighted in Section V.

II. PRELIMINARIES AND PREVIOUS WORK

A. Network-on-Chip Platform

Each PE is connected to a router through a Network
Interface (NI). These routers are connected together into a
mesh based NoC architecture. A router has five input/output
ports, one port is connected to the Network Interface while
the remaining ports are connected to other routers at each
side (North, West, South, and East). Message Passing Interface
(MPI) architecture is adopted to transfer the packets between
the cores. Fig. 1 shows the interconnections between routers
and the PEs. Wormhole switching strategy is used to transmit
flits between the routers and the PEs where a packet is
divided into a header flit and body flits. Flits are 64-bits
wide and the header flits contain control information such
as source/destination addresses, packet size in term of flits
and packet sequence number for higher network layers usage.
Packet sizes may vary from 1 flit to 64 flits. Dimension Order
Routing (DOR) is employed to route packets among NoC
architecture where it features deadlock and livelock freedom
and design simplicity.

The header flits require extra cycles to be transmitted. One
clock cycle is consumed by the Header Processing Unit (HPU)
to process the destination address. Another clock cycle is
consumed by the arbiter to arbitrate between different inputs.
Moreover, flit transmission to the next router takes one cycle.
Body flits require only one clock cycle to be transmitted to
the next router.

B. Power Model

Power consumption in the semiconductor technologies con-
sists of static and dynamic power. Static power consumption
becomes a critical factor in the total power as the transistors
become smaller and faster. The leakage current is a significant

Fig. 1: A 3 x 3 NoC Mesh Network Example

factor when the technology is scaled down. On the other hand,
dynamic power consumption is produced by the switching
activities in the semiconductor circuits. In CMOS technology,
it is caused by the capacitive load charge of the transistor
gates as well as the capacitance and resistance of wires. NoC
systems consist of routers and links that connect the routers.
Flits travel from a hop to another through routers until they
reach their final destinations. As they are traveling, they are
processed by the routers’ logic and passed through the links.
Therefore, the flit energy can be expressed as follows:

Eflit = H × Erouter + (H − 1)× Elink (1)

Where E represents the energy and H represents the number
of hops. The header flit consumes higher energy since it
takes extra clock cycles to be evaluated. The packet energy
is expressed by the following equation [10]:

Epacket = H × (EHflit+ t×EBflit)+ (H − 1)×Elink (2)

where t is the number of data flits. EHflit and EBflit

represent the energy consumption of header and data (body)
flits respectively and furthermore can be expressed more to
the following:

EHflit = Ebuffer + Ecrossbar + Earbiter (3)

EBflit = Ebuffer + Ecrossbar (4)

Dynamic power consumption can be reduced when the
energy of the packet is minimized. This can be achieved by
minimizing the packets communication energy between PEs.
Mapping of the tasks plays an essential role of determining
the packet traveling paths which reduces the number of hops.
On the other hand, tasks scheduling affects the buffering
requirements of packets along with travel path.

C. Previous Work

An efficient branch-and-bound algorithm was proposed in
[8] for mapping problems in order to yield energy and relia-
bility oriented solutions. The results of the proposed algorithm
in [8] were compared to the results from simulated annealing
based mapping. A heuristic random greedy algorithm was
compared to the optimal MIP formulation of mapping and



voltage islanding problem in [11]. It was shown in [11] that
the MIP formulation was not tractable. It is evident from [8],
[11] that the MIP formulations of mapping problem may result
in impractical and inferior solutions.

Another branch-and-bound algorithm is proposed in [5] to
find near optimal mapping solutions that are energy aware
and satisfy the bandwidth constraints under some performance
constraints. The proposed mapping algorithm in [5] optimizes
the energy requirements based on the random assignment of
the tasks to the IP cores. So the mapping problem is to
place the IP cores in the appropriate locations on the regular
grid in order to minimize the energy based on the network
traffic [5]. Authors in [12] propose a comprehensive two-stage
NoC synthesis model by utilizing the MIP. In the first stage,
an energy efficient system-level floor-planning is achieved
through MIP. The second stage is conducted for a detailed
routing functionality. At stage two, placement of routers is
optimized to enable the traffic flow. The MIP model is very
complicated in [12] and it often does not return a solution
within the run-time limits. So a clustering-based heuristic is
proposed to address the complexity issue of the second stage.
It should be noted that if a certain level of the problem
abstraction is not applied appropriately in the MIP models,
it is very likely that the MIP models will not be able to
return a solution within the run-time limits due to complexity
issues. In a similar way, the MIP models can be applied to
the dynamic voltage scaling problem on the heterogeneous
platforms [6]. From the earlier work, it is evident that the MIP
implementations may suffer gravely from two shortcomings:
misjudging the level of problem abstraction and the difficulty
in accurate modeling.

The CP paradigm is used in [13], [14] on scheduling
problems of multi-task application on Multi-Processor System-
on-Chip (MPSoC) after using the MIP models for finding allo-
cation solutions. Thus, mapping and scheduling problems are
effectively decomposed [13], [14] into two sub-problems and
solved in tandem like in our implementation. Computational
efficiency of the decomposition method was shown in [14] in
comparison to the full optimization models. Therefore, floor-
planning and application scheduling tasks are conducted in
two different stages as a result of decomposition. However,
we utilize the CP approach for both mapping and scheduling
problems rather than using the MIP for the mapping stage and
the CP for the scheduling stage in contrast with [14].

III. MOTIVATION AND PROBLEM FORMULATION

A. Basic Assumptions and Overview

Assume a set of PEs, organized as a 2-D mesh of dimensions
n = m×m. Since all of the PEs are identical, the architecture
is homogeneous. Each PE can be labeled according to its
position in the mesh (as an x and y coordinate pair) and has
the capability of executing several tasks of the application in
tandem. Because all the PEs on the mesh are identical, there
is no differences in the task execution time. Nevertheless, the
heterogeneous architecture can be implemented by introducing
PE dependent execution times and some additional constraints

to relate each task type to the PE families. The implementation
of the heterogeneous PEs is out of scope of this paper and is
planned for a future publication.

The task set is represented by an annotated task graph
(TG), e.g. the one shown in Fig. 2 which depicts a sample
task graph generated by TGFF [15]. Each node in the graph
represents a task of the application with its execution time
given in the parentheses. Communication requirements (flits)
between tasks are shown on the edges (links). TGFF can
generate individual task deadlines. However we omit this type
of constraints in this study. TGFF was used in generating
several benchmark task graphs that have been used in the
literature before (see [11], [8], [12]).

The cost of transferring data from one PE to another is
a function of the routing algorithm. Deterministic routing
algorithms can easily be incorporated to the optimization
problem on hand and can help in finding the optimal ap-
plication task schedule. The transfer cost based on the XY
routing algorithm is proportional to the Manhattan distance
which can be calculated between points a and b on a grid as:
TCab = |xa − xb|+ |ya − yb|.

The buffer size is assumed to be unconstrained (i.e. infinite
buffer size). Any communication link can only be occupied by
a single packet at any given time without any constraint on the
bandwidth size. The communication links are bi-directional. In
other words, any particular link between two routers can be
considered as a separate link (resource) in each direction.

B. Problem Formulation

The basic mapping problem is an instance of the QAP and
can be formulated as a mathematical program model given
in Eq. 5 where the decision variable xij , i, j = 1, . . . , n is
a Boolean variable, f and d are flow and distance matrices
(parameters) respectively. In general, QAP instances that have
size of n > 30 cannot be solved in a reasonable time [4].

minimize
x∈X

n∑
i,j,k,l=1

fikdjlxijxkl

s.t.

n∑
j=1

xij = 1, i = 1, . . . , n,

n∑
i=1

xij = 1, j = 1, . . . , n,

xij ∈ {0, 1}, i, j = 1, . . . , n.

(5)

where the decision variable, xij simply determines whether
goods (or information in our context) should be sent from node
i (PEi) to node j (PEj). The parameter d is the Manhattan
distance between all the possible pair combinations of the PEs
on the mesh. Parameter f represents the information to be sent
between each PE.

The objective function in Eq. 5 is a representation of the
dynamic power and it can be simplified by introducing a
permutation variable, π, as below [4]

minimize
π

n∑
i,j=1

fijdπiπj



where πi = j, if xij = 1 for i, j = 1, . . . , n. Introducing the
permutation variable enables us to use the CP by invoking
alldifferent constraint which specifies the values as-
signed to the decision variables that must be pairwise distinct
[16] on the permutation variable,π, as in Eq. 6. In other words,
each of the n variables should be assigned a unique value
between 1 and n.

minimize
π

n∑
i,j=1

fijdπiπj

s.t.
alldifferent(π1, . . . , πn),
πi ∈ {1, . . . , n}, i = 1, . . . , n.

(6)

As given in Eq. 6, the QAP can be modeled in a very intuitive
way by utilizing the CP approach. Instead of n2 Boolean
decision variables and 2n constraints besides 0-1 integrality
constraints in Eq. 5, there are only n decision (permutation)
variables and a single alldifferent constraint besides
the integrality constraints. Aside from the simplicity of the
model representation, the central strength of the CP approach
is to construct smart propagation search techniques to detect
the dead-ends on the search tree as early as possible and
prune them [16]. The efficient search depends on the efficient
filtering of the domain which is defined as a finite set of ele-
ments that can be assigned to a decision variable. Efficient arc
consistency algorithms exist to find the solutions that satisfy
the alldifferent constraint. In general, alldifferent
can be checked for consistency, i.e. to be determined to have a
feasible solution, in O(z

√
n) time [16] where n is the number

of decision variables and z is the sum of cardinalities of
each domain that belongs to a decision variable. Considering
that z = n2 in our problem, the complexity of consistency
checking of alldifferent constraint is then O(

√
n5).

Once the solution to the floor-planning problem determines
the position of the processing elements on the mesh, the
application task scheduling problem can be posed as a separate
mathematical programming model. Recall that all the PEs are
identical and the processing times for a given task are equal
for all the PEs. Hence, the optimal solution found in Stage I
can be considered as the best floor-planning assignment that
does not consider the bandwidth constraints. In other words,
it is a relaxed solution without the bandwidth constraints.
The application scheduling problem in Stage II becomes
challenging when the bandwidth constraints are introduced.
The new scheduling problem can be posed as a constraint
programming model by letting appropriate decision variables
to represent start time, end time, and processing time of tasks.
The advantages of using CP in scheduling are two-fold [17]:

• Natural and flexible way of modeling the scheduling
problems by the CP.

• Efficient temporal and resource constraints.

For example, precedence constraints can be represented
by endBeforeStart, endBeforeEnd, endAtStart,
and endAtEnd constraints easily. An endBeforeStart
constraint requires a job to end before the other job starts.
Similarly, an endAtStart constraint requires a job to end

Fig. 2: A Representative CTG: D20A

at the start of the other job. A noOverlap constraint can be
used to schedule the tasks that utilize certain resources. Thus,
precedence constraints can be constructed from the task graph.
Communication links between routers can be considered as
resources to model bandwidth requirements. We can then
easily use noOverlap constraint to find a schedule of trans-
mission tasks through a particular communication link without
violating precedence and resource availability constraints.

IV. EXPERIMENTAL STUDY

This section illustrates the applicability of our constraint
programming based approach on randomly generated bench-
mark datasets.1 Throughout the experiments, we assume that
channel can hold 64-bit flits, the packet size is 64 flits, and
a 1000MHz architecture is utilized. Tasks execution time and
packets transmission delay are measured in clock cycles and
therefore clock operating frequency does not influence the
mapping and scheduling performance. The header flits require
extra time of three clock cycles. 3× 3 and 4× 4 regular mesh
architectures with identical PEs are utilized in our experiments.
Notice that it is impractical to solve the QAP for larger
meshes by using MIP, since the problem size becomes very
large. However, the larger mesh architectures can be easily
applied in our implementation due to the parametric nature of
the CP models. All experiments are run on a dedicated dual
Xeon quad-core processor server running on Windows Server
2008 with 14GB memory for bookkeeping purposes. However,
individual models can be run on development laptop that has
a dual-core processor running Windows 7 with 4GB memory.
The CP models are implemented by using IBM ILOG OPL
Studio, which is available free of charge to the academicians
at IBM Academic Initiative web site.2

1All the datasets and optimization models can be downloaded at
http://tinyurl.com/cdq5l9n .

2http://tinyurl.com/cu5txlg



A. Benchmark Set Generator

For the sake of providing a set of benchmarks for the
mapping and scheduling algorithm, a random problem gener-
ator, called TGFF, was used [15]. TGFF generates annotated
communication task graphs (CTG) in a pseudo random way.
Each task graph represents an executable application, which
can be created starting from a set of configuration parameters,
such as the number of tasks and maximum input and output
task degrees. Fig. 2 depicts a sample communication task
graph with task execution times (clock cycle) are depicted
within each task, communication requirements are given on
the arcs (links). Precedence constraints can easily be derived
from Fig. 2

A wide and representative set of task graphs was syn-
thesized. The number of tasks (i.e. the problem’s size) was
randomly generated to be in the range from twenty to seventy
tasks. Several task degrees were also set, in order to model
different complexities of the fifteen different task graphs
generated. A summary table is given in Table I which lists
the number of tasks, the number of communication links, the
sum of computational time in clock cycles, and the sum of
communication volume in flits of each CTG. Table I also
reports representative scheduling problem sizes for both 3× 3
and 4× 4 regular mesh architectures.

B. Implementation Details of the Proposed Model

There are practically two separate CP models, one for
the each stage. The stage I is primarily composed of the
CP model given in Eq. 6. Since 3 × 3 and 4 × 4 regular
meshes are used in our implementation, there are only nine
and sixteen decision variables respectively for the CP model
in the stage I and the domain (D) of these variables are
{1, . . . , 9} and {1, . . . , 16} respectively. There are two main
input parameters for this stage besides the random assignment
of the tasks to PEs: namely flow (f ) and distance (d) matrices.
The distance matrix, d, represents the transfer cost TC for the
XY-routing, i.e. Manhattan distances between the nodes on the
meshes which are 3× 3 and 4× 4 in our implementation (see
Fig. 1). The flow matrix, f , expresses the total communication
requirements (data flits) between each task given on the edge
of the task graphs (see Fig. 2) with the additional header flit
overhead for each data packet transferred.

The mapping problem is poorly-defined without randomly
assigning tasks to the PEs first. Otherwise, it is always
feasible to assign all of the tasks to a single PE which will
result in ‘0’ energy consumption i.e. null solution for all the
data communications of the tasks. The random assignment is
devised in such a way to guarantee the assignment of at least
one task to the each PE. However, each PE is expected to
serve for the multiple tasks as equally likely.

After producing an assignment solution at Stage I by solving
CP model given in Eq. 6, we can now schedule all the
tasks and their corresponding communication tasks as well.
The second stage is more complicated than the first one in
terms of the modeling as the detailed implementation of the
routing algorithm is required. The objective of Stage II can

ID Task Packet ID Seq Link Header Clock Cycle 

  
Fig. 3: Data Structure for Communication Tasks

be set to minimizing the maximum completion time (make-
span) among all the tasks. To enable an easier scheduling
implementation, one can consider communication tasks among
PEs at a very detailed level to generate precedence constraints
appropriately. The reason for this is primarily the implemen-
tation of wormhole switching algorithm with XY routing.

We propose the creation of a data structure at flit type
level given in Fig. 3 to manage this implementation. This
particular data structure is created after Stage I to initiate the
scheduling model in Stage II of the CP model. The ID variable
is a unique ID to identify each communication task. The
Task variable represents the communication task between two
particular PEs. For example, in Fig. 2, the communication
task between t6 and t15 can be considered as the pair
“<6,15>”. Notice that we do not necessarily consider the
physical location of PEs that process tasks t6 and t15 for
the Task variable. The data transfer between any two routers
can be divided into several packets. The variable Packet ID
is used to identify the corresponding packet. If the number
of flits carried between two routers is t, then the number of
packets can be calculated by ⌈ t

p−1⌉ where p is the packet size.
The sequence ID is represented by the variable Seq, which
is incremented accordingly depending on the particular link
the packet visits and, whether a header or body flit is being
transmitted. The variable Header is used to identify the type
of flit being transmitted. For a header flit, the Clock Cycle
variable is set to 3. Otherwise, Clock Cycle is set to
p− 1 (the remaining size of the last packet) for the body flit.
Representative scheduling problem sizes for the data structure
created after Stage I are given in Table I for both 3 × 3 and
4× 4 meshes.

By carefully crafting the data structure given in Fig. 3,
the precedence constraints which are used to implement
the wormhole switching and the XY routing can be easily
devised in order to find a solution to the application task
scheduling. As mentioned in Section III endBeforeStart,
endBeforeEnd, endAtStart and endAtEnd constraints
can accordingly be used in Stage II CP model. Notice that the
physical links between routers should be treated as resources
in the application task scheduling problem. When we consider
these links as resources, it is pretty straight forward to imple-
ment the bandwidth constraints by noOverlap constraints.
Notice that we do not have a bandwidth size limitation
in our implementation, however our formulation implicitly
constraints the bandwidth size as equal to the packet size.
Therefore only one packet can be served at any given time for
a particular link (physical link) on the network.

The run-time limits for the Stage I and the Stage II CP
Models are both set to 1000 seconds total CPU time in our
experiments. Considering that four processors are set to be
used by IBM ILOG solver, CP models return optimal or the



TABLE I: Summary Data of Communication Task Graphs and Corresponding Problems

Task Graph Instances D20A D20B D20C D30A D30B D30C D40A D40B
Number of Tasks 20 20 24 30 30 38 42 40
Number of Links 22 19 23 41 37 37 53 52
Tot. Comp. Time 108469 89687 108240 146841 153730 181745 199638 195887
Tot. Comm. Vol. 54526 46771 59463 103420 94909 94909 131847 129208
Sched. Prob. Size (3× 3) 3016 2741 3304 5798 5578 4649 7063 7902
Sched. Prob. Size (4× 4) 5208 4442 5172 8290 8301 8014 9932 10409
Task Graph Instances D40C D50A D50B D50C D70A D70B D70C
Number of Tasks 41 54 53 57 72 70 77
Number of Links 58 68 70 71 87 110 91
Tot. Comp. Time 220619 267207 246648 288135 349326 357449 399142
Tot. Comm. Vol. 150717 164801 170996 172843 211611 266535 219866
Sched. Prob. Size (3× 3) 8328 9517 10648 10390 12158 14140 12842
Sched. Prob. Size (4× 4) 13335 13573 14440 13254 16563 23401 19454

best solution within 250 seconds at each stage. This is the way
CPU time is controlled by solver, therefore there is no need
to report the actual run times.

C. Results

We conducted the experiments for fifty random realizations
of the instances that are summarized in Table I. A random
realization is essentially a set of random assignments of the
tasks to the PEs. All of the experiments ran successfully
and returned solutions without any failure. Compared to very
limited the number of tasks and the number of links used in
the experimental studies previously (e.g. around 30 in [13], at
most 24 in [11]), the task graphs generated for our experiments
include graphs with 77 tasks and 110 links at most. It should
be noted that even the benchmark datasets used in the previous
work such as [11], [8], [12] were generated by TGFF [15]. The
floor-planning model i.e. the Stage I model always returned
the optimal results. But the application scheduling model i.e.
the Stage II model which is a more complex model than the
Stage I returned the best solution within the run-time limit.
As a representative result, the Stage II models picked the best
solution among 2.1, 9, 3.9, and 2.24 solutions on the average
for D30C, D40C, D50C, and D70C instances respectively.
Since CP is an AI-based search technique that will return the
current best solution if the none solution is proven to be the
optimal one.

We observed the objective values of the Stage I and the
Stage II CP models, these are summarized by the box-plots
depicted in Fig. 4 and Fig. 5 respectively for the 3 × 3
mesh architecture. A box-plot is a common plotting tool to
summarize and depict the distribution of a continuous random
variable. The bottom side of the rectangular box represents
the first quartile. The middle horizontal line in the rectangular
area is the median. Finally, upper side of the rectangular box
shows the third quartile of the distribution. The range of the
distribution can be easily visualized by a box-plot. Outliers
are presented at the tail or the head of the box-plot as circles.

As the complexity of the underlying problems increases, the
objective values of the CP models increase as well, since the
underlying problems are the minimization problems.

As power models given in Section II indicate relationship
between energy consumption and the number of hops packets
that traveled between the PEs. Hence it is assumed that the
actual power usage will be a function of the current objective
function of the Stage I CP model which is the sum of
information flow multiplied by the distance between the PEs.
Therefore, our formulation successfully addresses the issue of
energy-aware design of NoC architecture. The completion time
of all of the tasks in a task graph is used as the objective
function in the Stage II CP model. Some other objectives such
as task (job) tardiness or lateness can be used as well. But it
is still safe to use universally the latest task completion time
as the objective function to minimize in scheduling problems.
Notice that, none of the scheduling problem was found to be
infeasible, all of them returned the best solution found.

The distributions of latency at packet level for each instance
are depicted in Fig. 6 for 3× 3 mesh architecture. Due to the
network congestions by increasing complexity of CTGs, it is
expected to have higher latencies for the packet transmissions.
We can conclude from Fig. 6 that the variation of the packet
latency increases as well by increasing the complexity of the
CTG with respect to the congestion of the network.

Fig. 7, Fig. 8 and Fig. 9 summarize the results from the
4× 4 mesh architecture. When we compare Fig. 5 and Fig. 8,
we can see the benefits of the extra resources (i.e. PEs) effects
on the clock time. As expected the 4 × 4 mesh architecture
completes the tasks earlier than the 3×3 mesh architecture. On
the other hand, the application scheduling task becomes more
complex by increasing the mesh size due to the extra decision
variables and the resources in the model as seen in Table I.
However, the CP models were able to return the results within
the same run-time limits as the experiments for the 3×3 mesh
architecture.
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V. CONCLUSION AND FUTURE WORK

A CP-based two-stage model is proposed to solve the
mapping and the application scheduling problems listed in [2]
as outstanding research problems in application modeling and
optimization for NoC communication. The major benefit of
using CP is the clarity and understandability of the models.
The CP modeling is more flexible than the MIP on many
challenging optimization problems including mapping and
scheduling.

We successfully experimented our model on various bench-
mark datasets generated by TGFF. Deterministic XY-routing
with wormhole switching is successfully used for the task
and the data communication scheduling. We were able to use
flexibility provided by the CP modeling tools. The usage of
a deterministic routing algorithm in our implementation can
be justified by the adverse effects of the uncertainties of the
routes taken and the cost of modeling to prevent the dead-lock
and the live-lock situations in the case of adaptive routing.
However, adaptive routing algorithms should be incorporated
to the CP models for a realistic application.
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Fig. 6: The Distribution of 3× 3 Mesh Latencies (Clock
Cycle Time) for Each Instance
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Certainly, the models that handle the router buffers are more
plausible in terms of being closer to the realistic NoC designs.
However, the flexible data structure proposed in Fig 3 and
the mathematical models of the routers [18] can greatly help
in achieving so in future studies. In addition, we can join
both the mapping and the application scheduling problems as
previously done in [9] instead of using a two-stage model, but
one can achieve it by the CP modeling in a more elegant and
simpler way without having excessive complexity.

A logical extension to the homogeneous platform is to study
the case of having the heterogeneous PEs. The challenge of
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Cycle Time) for Each Instance

the dynamic voltage frequency island (VFI) is open in terms of
providing the robust models [19], [11]. Therefore, an extension
of the CP model should be in the direction of studying VFI
on heterogeneous platforms and adaptive routing. The work in
this paper can be extended to the real applications on various
processing platforms in the future.
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