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ABSTRACT
A semi-supervised clustering algorithm is proposed that combines the benefits of
supervised and unsupervised learning methods. The approach allows unlabeled
data with no known class to be used to improve classification accuracy. The ob-
jective function of an unsupervised technique, e.g. K-means clustering, is modi-
fied to minimize both the cluster dispersion of the input attributes and a measure
of cluster impurity based on the class labels. Minimizing the cluster dispersion
of the examples is a form of capacity control to prevent overfitting. For the the
output labels, impurity measures from decision tree algorithms such as the Gini
index can be used. A genetic algorithm optimizes the objective function to pro-
duce clusters. Experimental results show that using class information improves
the generalization ability compared to unsupervised methods based only on the
input attributes.

1 INTRODUCTION
In this work, we examine an approach to solve classification problems that combines

supervised and unsupervised learning techniques. In supervised learning, we are given a
set of labeled training points, and the task is to construct some function that will correctly
predict the labels of future points. In unsupervised learning such as clustering, the task is to
segment unlabeled training data into clusters that reflect some meaningful structure in the
data. For the Semi-Supervised Learning Problem (SSLP) we assume that we are given both
labeled and unlabeled points. The task is then to predict the labels of the unlabeled points
using all the available labeled data, as well as unlabeled data. One would expect a better
generalization ability of the resulting classifier due to the better understanding of the input
distribution resulting from using all the available data. The semi-supervised learning prob-
lem can be used to perform transductive inference (Vap98). In transduction, we are given
a set of training data and a set of testing data, and the learning task is to predict the labels
of the specific testing data only. Different testing data will produce different classification
functions. The intuition is that transduction is a simpler problem because we are trying to
construct a function that is valid only at specific points, versus in induction where the goal
is to construct a function valid at all future testing points.

In this paper we take the approach of incorporating label information into an unsu-
pervised learning approach. Our goal is to group both labeled and unlabeled data into the
clusters where each cluster is as pure as possible in terms of class distribution provided by
labeled data. The advantage of such an approach is that it can be used for both inductive and
transductive inference. In addition the clusters help characterize segments of the population
likely or unlikely to possess the target characteristic represented by the label.

As a base to our semi-supervised algorithm, we use an unsupervised clustering method
optimized with a genetic algorithm incorporating a measure of classification accuracy used
in decision tree algorithms, the GINI index (BFOS84). Here we examine clustering algo-
rithms that minimize some objective function applied to k-cluster centers. Each point is as-
signed to the nearest cluster center by Euclidean distance. The goal is to choose the cluster
centers that minimize some measure of cluster quality. Typically a cluster dispersion metric
is used. If the mean square error, a measure of within cluster variance, is used than the prob-
lem becomes similar to the classic K-means clustering (JD88). We also experimented with
an alternative metric, the Davis-Bouldin Index (DB79), that is a function of both the within
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cluster variance and between cluster center distances. By minimizing an objective function
that minimizes a linear combination of the cluster dispersion measure and the Gini Index,
the algorithm becomes semi-supervised. The details of the problem formulation are given
in Section 2. Since the objective function is highly nonlinear and discontinuous with many
local minima, we optimize it using the C++ based genetic algorithm (GA) library package
GAlib (Wal96).

GAs are well known for being able to deal with complex search problems by imple-
menting an evolutionary stochastic search. Because of this, GAs have been successfully ap-
plied to a variety of challenging optimization problems. The NP-hard nature of the cluster-
ing problem makes GA a natural choice for solving it such as in (BHBC96; SYK97; MC96;
Cuc98). A common objective function in these implementations is to minimize the square
error of the cluster dispersion:

E � K

∑
k� 1

∑
x � Ck

�
x � mk

� 2 (1)

where K is the number of clusters, mk is the center of cluster Ck. This is indeed the objective
function for the K-means clustering algorithms. The algorithm proposed in (SYK97) modi-
fies this objective function by using the inverse of Davies-Bouldin index defined in (DB79;
JD88) and minimizing it by using evolutionary programming.

In Section 2, the problem definition and the proposed algorithm are given. Details
about the GA implementation are given in Section 3. Experimental results are given in Sec-
tion 4. A comparison with 3 nearest neighbor and linear and quadratic discriminant analyses
is also reported in Section 4. Finally, we summarize our findings in the Section 5.

Related approaches for combining supervised and unsupervised learning exist. For ex-
ample LVQ (Koh88) and CTM (CKM97) also use the approach of adapting a primarily un-
supervised method to perform classification. This paper helps address the interesting, but
still open question, of how well such methods can exploit the information in unlabeled data
to support transductive inference.

2 PROBLEM DEFINITION
Clustering, in general, is defined as grouping similar objects together by optimizing

some similarity measure for each cluster such as the within group variance. Since clustering
generally works in an unsupervised fashion, it is not necessarily guaranteed to group the
same type (class) of objects together. In this case, we need to introduce supervision to the
our learning scheme through some measure of cluster impurity. The basic idea is to find a set
of clusters then minimize a linear combination of the cluster dispersion and cluster impurity
measures. More specifically, select K � 2 cluster centers, mk (k � 1 ���	�	�	� K), that minimize
the following objective function:

min
mk 
 k� 1 
 � � � 
 K β � Cluster Dispersion 
 α � Cluster Impurity (2)

where α � 0 and β � 0 are positive regularization parameters.
If α � 0, then the result is a purely unsupervised clustering algorithm. If β � 0 the result

is a purely supervised algorithm that tries to minimize the cluster impurity. As in the K-
means algorithm, each point is assumed to belong to the nearest cluster center as measured
by Euclidean distance. Each non-empty cluster is assigned a class label corresponding to the
majority class of points belonging to that cluster. Two cluster dispersion measures from the
clustering literature will be examined: mean square error (see (DBE99)) and Davis-Bouldin
Index (see (DBE99)). It is important to note that for the induction case, cluster dispersion
is based on the labeled training data. For the transduction case, the cluster dispersion is
based on all available data, both labeled and unlabeled. For the cluster impurity measure,
a measure of partition quality common in decision tree algorithms, the Gini Index, is used
(see (DBE99)). In this case, Gini Index of a certain cluster is computed as: GiniPj

� 1 � 0 �
∑k

i� 1 � Pji

Nj � 2 j in 1 ���	�	�	� K where Pji is the number of points belong to ith class in cluster j. N j

is the total number of points in cluster j. The impurity measure of a particular partitioning
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into K clusters is: impurity � ∑K
j � 1 TPj � GiniPj

N where N is the number of points in the dataset.
Since the objective function (Eq.2) is highly discontinuous with many local minima, we
optimize it using the genetic algorithm library (see Section 3) GA-Lib. When a solution is
found, it might contain clusters with little or no points assigned to them. These clusters are
deleted and relevant points are reassigned to their nearest cluster centers. Practical details
of this algorithm are discussed in the computational results section (see Section 4). The
resulting algorithm can be summarized as follows:

Algorithm 1. Semi-supervised clustering algorithm

Within genetic algorithm:

1. Determine cluster centers
2. Partition the labeled data by distance to closest cluster center.
3. Find non-empty clusters, assign a label to non-empty clusters by majority class

vote within them.
4. Compute dispersion and impurity measures:

Induction: Use labeled data.
Transduction: Use labeled + unlabeled data.

Prune clusters with few members.
Reassign the points to final non-empty clusters.

We found the Gini index to be generally preferable over other impurity measures such
as the number of misclassified points. If the simple number of misclassified points is used,
then the misclassified points may be distributed evenly throughout all the clusters. The Gini
Index favors solutions with pure clusters even at the expense of total classification error.
Other decision tree splitting criterion such as Information Gain could also be used for cluster
impurity measures (Qui84).

3 GENETIC REPRESENTATION AND ALGORITHM
The objective function (Eq. 2) defined in the previous section is discontinuous and

non-convex. Finding an optimal solution to this problem is extremely difficult, so heuristic
search is desirable. We utilized a genetic algorithm approach because the objective func-
tion defined can be readily used as a fitness function in the GA. As opposed to develop-
ing a genetic algorithm from scratch, we customized the general purpose GA library, GAlib
(Wal96), utilizing the floating-point representation but otherwise utilizes Goldberg’s simple
GA approach (Gol89).

In a genetic algorithm application major concerns are genome representation, initial-
ization, selection, crossover and mutation operators, stopping criteria and most importantly
the fitness function. The objective function (Eq.2), defined above, is directly used as the
fitness function without any scaling. The genome representation consists of an array of Kd
real numbers, where d is the number of dimensions in the data and K is the number of clus-
ters. Each set of d numbers represents one cluster center. This type of representation brings
several advantages over prior discrete representation of cluster membership. First, cluster
memberships are assigned based on Euclidean distance metric in this case instead of assign-
ing them based on the values of genome. Second, each genome requires less search space
than previous applications for the large datasets, since the length of the genomes depends
only on the number of clusters (K) and the dimensionality (d) of the dataset, not the number
of data points. It is therefore possible to handle the large datasets with this representation.

Default genetic operators defined for GARealGenome class in GAlib were applied. A
mutation with Gaussian noise is the default in this case. Uniform crossover was applied
as the default crossover operation. Although the uniform initializer is used by default, the
population was initialized by sampling from the data. A uniform selection rule was used for
selecting mating individuals (parents).

Two stopping criteria were applied . The algorithm stops when either of them is sat-
isfied. One of these criteria is the maximum number of generations. The other one is the
convergence after a certain number of consecutive generations.

The genetic algorithm yields reasonable results for both induction and transduction
problems. The experimental findings are summarized in the next section.
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Table 1. Results Using MSE in Fitness Function

Induction Transduction
Data Set MSE-Only GINI-Only MSE+GINI MSE+GINI
Bright 0.06585 0.01084 0.02507 0.02263
Sonar 0.43279 0.2541 0.22951 0.26066
Heart 0.23636 0.21477 0.2 0.19659
Iono. 0.25673 0.14423 0.12788 0.12981

Housing 0.25828 0.15629 0.18874 0.16887
House 0.09846 0.06692 0.06 0.06308

Prognos. 0.1 0.05059 0.06235 0.05235
Pima 0.32402 0.27118 0.30131 0.30393

4 EXPERIMENTAL RESULTS
The goals in this computational approach are to determine if combining supervised and

unsupervised learning approaches techniques could lead to improved generalization, and to
investigate if performing transductive inference using unlabeled data for training could lead
to improvements over inductive inference. We experimented with eight datasets from the
UC-Irvine Machine Learning Repository (MA92)1. The datasets have all originally two-
class output variable except Housing. The output variable for this dataset was categorized at
the level of 21.5. Each dataset was divided into three subsets after a standard normalization.
We call these subsets the learning, testing and working sets. Currently 40% of data is for
learning, 30% is for testing and remaining 30% is for working sets. For each dataset, two
scenarios have been tested to understand the difference between inductive and transductive
inferences. For inductive inference, the algorithm is applied to labeled training data and then
tested on the testing data. For transductive inference, the algorithm is applied to labeled
training data, unlabeled working data, and unlabeled testing data, and then tested on the
testing data.

We report experiments using seven different fitness functions. The two different clus-
ter dispersion measures, MSE and Davies-Bouldin Index, are applied to induction in a com-
pletely unsupervised mode � β � 1 � α � 0 � and semi-supervised mode � α � 0 � β � 0 � , and
transduction in a semi-supervised mode � α � 0 � β � 0 � . We also tried the completely super-
vised case based on only the Gini index � β � 0 � α � 1 � . For transduction, both the cluster
dispersion measure and the Gini index are based on the labeled and unlabeled data. In trans-
duction, the Gini index becomes: GiniPj

� 1 � 0 � ∑k
i� 1 � Pji

N̂j � 2 j in 1 ���	�	�	� K where N̂ j is

equal to number of labeled and unlabeled points in cluster j.
The best parameter set for the problem was picked by trial and error. We use same set

of GA parameters for each dataset. The maximum number of generations is 500, mutation
probability is 0.01, probability of crossover is 0.95, and number of generations to converge
is 50. Experiments are conducted based on 10 bootstrap samples. For brevity only the av-
erage testing set error results are reported here. A paired t-test was used to assess the sig-
nificance of difference of the testing set errors within a dataset. Errors with a p-value less
than 0.2 were considered significant. To insure that the weaker performance of MSE was
not based on poor choice of parameters, (K � β � α) for each dataset were chosen based on tri-
als with the inductive MSE with Gini index.2 For the DBI based results, the same values of
K were used for each dataset, and the fixed values of β � 0 � 01 and α � 0 � 1 were used for
all datasets.

The results using the first dispersion measure, MSE, are reported in Table 1. The first
column, MSE-only, indicates how the totally unsupervised approach of clustering based on
only the unlabeled training data would perform. The second column, GINI-only shows how
the completely supervised approach of clustering using the GINI index on the labeled train-
ing data performs. The third column is the proposed approach using both the MSE and GINI

1The datasets and their corresponding sizes are: Bright(14 variables, 2462 points), Sonar(60,208),
Cleveland Heart(13,297), Ionosphere(34,351),Boston Housing(13,506), House Votes (16,435), Breast
Cancer Prognosis(30,569), and Pima Diabetes (8,769)

2The � k � β � α � values applied for each dataset were bright (15, 0.01,0.99), sonar (7,0.1,1),
heart (7,0.25,0.75), ionosphere (7, 0.01,0.99), house (7,0.1,0.9), housing (11,0.01, 0.99), prognosis
(11,0.4,0.6), and pima (11,0.01,0.99).
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Table 2. Results Using DBI in Fitness Function

Induction Transduction
Data Set DBI-Only GINI-Only DBI+GINI DBI+GINI
Bright 0.26897 0.01084 0.01992 0.01165
Sonar 0.50656 0.2541 0.27049 0.23771
Heart 0.3841 0.21477 0.21136 0.19155
Iono. 0.34327 0.14423 0.12885 0.13558

Housing 0.4563 0.15629 0.17086 0.15497
House 0.11769 0.06692 0.07462 0.06923

Prognos. 0.38059 0.05059 0.04941 0.04353
Pima 0.34585 0.27118 0.28428 0.28122

Table 3. Comparison between Transductive DBI+GINI and 3-NN, LD, and QD

Data Set 3-NN LinDisc QuadDisc DBI+GINI
Bright 0.01247 0.02387 0.02112 0.01165
Sonar 0.2098 0.38025 0.35256 0.23771
Heart 0.19773 0.1745 0.22334 0.19155
Iono. 0.18846 0.14624 0.1294 0.13558

Housing 0.16291 0.16013 0.19946 0.15497
House 0.06154 0.0414 0.06995 0.06923

Prognos. 0.04235 0.04797 0.05348 0.04353
Pima 0.28777 0.2313 0.26401 0.28122

based on the labeled training data. The forth column indicates how MSE+GINI performs
transductive inference when all the available data is used. A bold number is the minimum
error for a given dataset, an italic number indicates that the result is significantly differ-
ent from the transduction result. The totally unsupervised MSE-only approach always per-
forms significantly worse than any of the supervised methods. Surprisingly, the GINI-only
complete supervised approach was the best on four of the eight datasets. The transductive
MSE+GINI method based on all available data showed no consistent improvements over the
induction approach. This is consistent with other researchers who have reported that doing
transductive inference using a regression estimate where the variance estimate was based
on all the available data (both labeled and unlabeled) actually degraded results (Bot99).

The DBI dispersion measure was much more effective than the MSE with regards to
transduction. The results for the DBI dispersion measure on the UC-Irvine Data are reported
in Table 2. The same experimental setup and parameters as mentioned above were used ex-
cept that the maximum number of generations is set to 300. The same K was used as in MSE
approach, but the regularization parameters were modified due to the different magnitude
of the DBI. As a purely unsupervised approach DBI-only was even worse than MSE-only
at classification. The inductive DBI+GINI approach was not significantly different from
the GINI-Only approach. The transductive DBI+GINI was either better or not significantly
worse than GINI-only approach. Transductive DBI+GINI consistently produced the best
classification results of all the seven approaches tested primarily due to the more compact
and better separated clusters found by DBI over MSE. The evidence indicates that capac-
ity control based on both labeled and unlabeled data is much more effective using the DBI
criterion than MSE.

Another finding from the results is that DBI dispersion measure favors a fewer num-
ber of non-empty clusters compared to the MSE dispersion measure. On average, using
DBI dispersion measure resulted in 53.33%, 33.33%, 28.36%, 17.91%, 30.84%, 33.33%,
51.11% and 50.91% fewer non-empty clusters than MSE dispersion measure for transduc-
tive inference on the UCI datasets respectively.

In Table 3, results from some other classification techniques are compared with trans-
ductive DBI+GINI – specifically 3 nearest neighbor classifier, linear and quadratic discrim-
inant classifiers. The discriminant analysis was done using the SAS procedure DISCRIM
(SAS89). All results are reported on the test datasets. The DBI-GINI is consistently one of
the better methods.
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5 CONCLUSION
A novel method for semi-supervised learning that combines supervised and unsuper-

vised learning techniques has been introduced in this paper. The basic idea is to take an
unsupervised clustering method, label each cluster with class membership, and simultane-
ously optimize the misclassification error of the resulting clusters. The intuition behind the
approach is that the unsupervised component of objective acts like a form of regularization
or capacity control during supervised learning to avoid overfitting. The objective function
is a linear combination of a measure of cluster dispersion and a measure of cluster impu-
rity. The method can exploit any available unlabeled data during training since the cluster
dispersion measure does not require class labels. This allows the approach to be used for
transductive inference, the process of constructing a classifier using both the labeled train-
ing data and the unlabeled testing data. Experimental results also show that using DBI for
cluster dispersion instead of MSE helps transductive inference. This is due to the compact
and well separated clusters found by minimizing DBI. DBI finds solution using much fewer
clusters than MSE with much greater accuracy. The basic ideas in this paper: incorporating
classification information into an unsupervised algorithm and using the resulting algorithm
for transductive inference are applicable to many types of unsupervised learning and are
promising areas of future research.
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