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Ranking the data continues to be an important research problem in various fields. The
problem can be formulated in many ways. One way is to study ordering the data with
ordinal values, for instance ranking the preferences. This is a very useful approach to
collaborative filtering and ordinal regression problems. Database marketing mainly
focuses on “scoring” the customers to determine the target population. Thus, from
a database marketing point of view, ranking is related to scoring the consumer base.
On the other hand, we might be interested in finding the “importance” of the data
points from an analysis perspective. In this paper, we utilize the spectral properties
of graph Laplacian to rank the data. By ranking the data, we mean that determining
which points are more important if the data forms a graph. We propose a framework
to rank several benchmark datasets and visualize the ranking results.

1.1 Introduction

Ranking the data is an ongoing research area with diverse applications (Cao et al.,
2007). We propose a ranking algorithm based on graph Laplacian (Belkin & Niyogi,
2004; Belkin et al., 2006). Our ranking algorithm resembles the algorithm proposed
in (Zhou et al., 2004). The primary objective in (Zhou et al., 2004) is to develop
an algorithm based on some semi-supervised approach to rank the items for a given
query. The method proposed in (Zhou et al., 2004) can exploit the intrinsic manifold
structure of the data. The approach in (Zhou et al., 2004) can be seen as an extreme
case of semi-supervised learning in which only positive labeled points are provided
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to the algorithm.

Formally, ranking is defined as finding a function f : R” — R that orders the data
X € R”" correctly. The framework proposed in this paper is based on graph repre-
sentation of the data. Thus a graph G = (V,E) can be formed from X by Euclidean
neighborhood relations where x € X is represented by the vertices V and the relation-
ships are represented by the edges £ C V x V on the graph.

In this paper, we utilize spectral graph theory to tackle the ranking problem (But-
ler, 2006). Essentially, we use spectral properties of normalized Laplacian which is
defined as £ = D~'/2LD~'/2 = D~Y2(D—-W)D~'/? = — D~'/?WD~'/2 where
W is the adjacency matrix, D is a diagonal matrix formed by row sums of W, L is
traditional Laplacian matrix i.e. D — W, and I is the identity matrix. One of the most
important spectral properties of the normalized Laplacian is that its eigenvalues vary
between 0 and 2. If there are multiple eigenvalues which are equal to O then the
underlying graph is not connected. An eigenvalue of 2 indicates that the graph is
bipartite. On the other hand, we know from the convergence of the random walk that
the stationary distribution, 7, of the random walk is equivalent to the eigenvector
corresponding to eigenvalue 1 of the underlying transition matrix i.e. P=D~'W. In
other words, the corresponding eigenvector for this transition matrix,P, can easily be
shown that is equal to 7 = %. This particular stationary distribution is achieved, if
the graph is connected.

Practically, there is no need to use the power method to find the stationary distri-
bution once it is shown that the underlying graph is connected. Otherwise, we can
utilize an algorithm similar to Google’s PageRank (Page et al., 1998) which is not
necessarily symmetric (undirected) to find the stationary distribution of the random
walk (Zhou et al., 2004). Our approach differs from (Zhou et al., 2004) as we do not
attempt a semi-supervised approach. In fact, our approach does not utilize any class
labels at all. Our proposed method simply ranks the data. We report ranking results
of some benchmark datasets and visualize them by plotting with first-two principal
components of the high dimensional datai.e. X.

The organization of the paper is as follows. We give a brief summary of applica-
tion of the graph Laplacian in machine learning problems in Section 1.2. We then
introduce some preliminary concepts and earlier work on using the graph Laplacian
in ranking problems in Section 1.3. In Section 1.4, we explain the theoretical justi-
fication to our approach by introducing spectral graph theory. The framework and
the results on some real datasets are given in Section 1.5. The paper ends with a
conclusion in which we also point our future work in Section 1.6.

1.2 Using Graph Laplacian in Machine Learning Problems

The manifold learning via graph Laplacian has recently been studied by several au-
thors. In this section, we will briefly summarize some preliminaries of the graph
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Laplacian and show its strengths on various machine learning problems -especially
semi-supervised learning problem. The starting point for the graph Laplacian is the
adjacency matrix W. We can construct it from the nearest neighbors (binary), Eu-
clidean distance or heat kernel. For instance, w;; = 1 if points x; and x; are close -i.e.
x; is one of the k-nn of the x;-, w;; = 0 otherwise. The geodesic distance is defined
as the shortest distance between two vertices on the adjacency graph. Notice that we
can find the shortest geodesic distance of an unlabeled point and a labeled point.

After constructing W accordingly, the question arises how we can utilize such
information in our learning process? In order to study spectral properties of the
Laplacian, we can compute p eigenvectors corresponding to the smallest eigenvalues
for the eigenvector problem :Le = Ae where matrix L = D — W is the graph Laplacian
for the adjacency graph and D is diagonal matrix with the same size of W in which
Dj; is equal to sum of corresponding row i in W.

Laplacian is a symmetric, semi-definite matrix which can be thought of as an
operator on functions defined on vertices of the graph. The eigenfunctions can be in-
terpreted as a generalization of the low frequency Fourier harmonics on the manifold
defined by the data points (Belkin & Niyogi, 2004).

€11 €12 ... €1m
€21 €22 ... €2y
€pl €p2 ... €Epm

where m is the total number of points i.e. both labeled (/) and unlabeled () data and
p is the number of eigenfunctions we wish to employ. The error for the classification
problem can be determined by

ajeji)* (1.1)

-
™~

Err(a)=Y (v~

1 Jj=1

where the sum is taken over all labeled points -labels are denoted by y;- and the
minimization problem is considered over the space of variables a = (ay,...,a,)" .
Then we can find the a as follows (Belkin & Niyogi, 2004):

a=(EL,Ew) "ELyy (1.2)

where y = (yy,..., yl)T and Ej,, is constructed just for the labeled points. Then we
can classify unlabeled points using following formula (Belkin & Niyogi, 2004):

P
1, if Ze,-jajzo
=1

yi= =

p
—1, if ) eja; <0
j=1
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1.2.1 Semi-supervised learning via Graph Laplacian

By using unlabeled data, one might intuitively expect understanding of the marginal
distribution of &2 better in the learning process. However there is no direct relation-
ship between Yx and conditional Z2(y|x). The main assumption in (Belkin et al.,
2004; Belkin et al., 2006) is that if two points x1,x; € X are close in intrinsic geome-
try of Px, then the conditional distributions &2 (y|x;) and & (y|x;) are similar. This
is a very useful assumption to motivate semi-supervised learning in a more concrete
way.

The standard regularization framework can be summarized by the following opti-
mization problem.

' oLy
fr=argmin 7 1 Vi) + 2l (13)

This optimization results in a solution as follows (Belkin et al., 2006):

1
frx) = ;%’K(xi’x)

When Zx is known a priori, the related optimization problem of regularization
with additional information from the unlabeled data can be formulated as follows
(Belkin et al., 2006):

* : 1 4
f=argmin — YV (xi,yi, £) + vl fllx + vl (1.4)
fGHk l i=1

By utilizing Representer Theorem, we can find the optimum f* as follows (Belkin
et al., 2006):

[
710 = L k) + [ aGIK()d 250

where # = supp Px is the support of the marginal Px.

In the case of &y is not known a priori, we can utilize the unlabeled data to
estimate the underlying distribution. Particularly, we can estimate empirically Py
and || ||z Recently, some work has been conducted when the support of Py is
a compact submanifold .#Z C X = RY. 1In this case a natural choice for ||f| is
S 4 (Vuf.V.4f). Then we have an optimization problem as follows (Belkin et al.,
2006):

. 1y

The term [ ,(V_4f,V.»f) may be approximated by the usage of labeled and
unlabeled data in a graph Laplacian framework. Thus optimization problem takes
the following form.
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1.2.2 Support Vector Classification and Laplacian Extension

In this part of the paper, we briefly give the formulation for the Laplacian extension
of the SVM problem. This is just an illustration to depict the usage of the Laplacian
on a well studied SVM problem. In general, the following optimization problem is
solved for the SVMs. Note that the classification problem is defined for the labeled
points.

l

min 1" (1—3if () + 71l

f€Hk i=1

where the hinge loss is defined as (1 —yf(x))+ = max(0,1 —yf(x)) and the labels
Yi S {_] ) +] }

The primal form of SVM problem can be reformulated as follows (Belkin et al.,
2006):

I R
ip 7;5f+7||f||1<
subject to: yif(xi))>1-§& i=1,...,1 (1.8)
E>0 i=1,...,1

We can write the dual formulation of SVM problem as:
l 1 r
max i — =
may Y708

I
subject to: Zyiﬁ,- =0 (1.9)
i=1

1
0<pi<y i=l...1

Then we have the following solution to dual problem
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Y =diag(y1,...,y)

Q=Y LS Y
= 2
Y *
o= B (1.10)
2y
By incorporating the unlabeled data we can rewrite the general optimization for-
mulation as follows (Belkin et al., 2006):

D1 Yier
}2};}(7;(1 —if i)+ +nlfllk + -5 LE

The primal form of SVM problem can be reformulated as follows:

~

1
mn =Y &+ma’Ka+ L KLKa
acRm EcR! l =1 m
m
subject to: yi(Y oK (xixj)+b)>1-& i=1,....1 (1.11)
Jj=1
E>0 i=1,...,1
That will give us a solution for o as follows:
_ /i —1 4T *
a=02nul+2-—5LK)"J'Yp
m

where J is [ x [ diagonal matrix given by J = diag(|Y|) and B* is the solution to
dual SVM problem in which Q is computed by following equation

Vi o
Q=YJK( 2l + ZWLK) Ty

1.3 Preliminaries and Earlier Work

The idea of the graph Laplacian has been utilized in several earlier work. Most no-
tably, the approach in (Zhou et al., 2004) is very interesting and shows some resem-
blance to Google’s PageRank algorithm (Page et al., 1998). The primary objective
in (Zhou et al., 2004) is to develop an algorithm based on some semi-supervised
approach to rank the items for a given query. The method can exploit the intrinsic
manifold structure of data. Authors emphasize that their approach can be consid-
ered as an extreme case of semi-supervised learning in which only positive labeled
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points are provided to the algorithm. Notice that we do not attempt to develop a
semi-supervised learning algorithm in this paper.

We briefly summarize the algorithm proposed in (Zhou et al., 2004). Given a set of
points X = {x1,...,X;,...,xn } CR", the first / points are the queries and the rest are
the data that we want to rank. Suppose we have distance function d(x;,x;) defined
between two points. Moreover, define the vector Y = [y1,...,yn] where y; = 1 for i =
1,...,landy;=0fori=1[/+1,...,m. Let function g : X — R assign a ranking value
gi for each given x;. The algorithm can be summarized as follows (Zhou et al., 2004):

e Sort the pairwise distances among points in ascending order. Based on this
order, connect two points with an edge until a connected graph is obtained.

e Form adjacency matrix W defined by W;; = exp[—d?(x;,x;) /207 if there is an
edge linking points x; and x;. Note that W;; = 0 since loops are not allowed in
the graph.

e Symmetrically normalize W by S = D '2WD~/2 where D is the diagonal
matrix with the entries from the sum of rows of W.

e Iterate g(t + 1) = aSg(¢) + (1 — &)Y until convergence, where o € [0,1).

e Let g} be the limit of the sequence {g;(¢) }. Rank each point x; according to its
ranking score g; (largest first)

Theorem 1 of (Zhou et al., 2004) states that the sequence {g(7)} converges to
g" =B —aS)"'Y where B =1— . As seen from the above algorithm, (Zhou
et al., 2004) utilizes a variation of the power method to find the steady state distribu-
tion. Thus Theorem 1 of (Zhou et al., 2004) provides a formal explanation that the
algorithm guaranties finding a steady state distribution that can be used as a ranking
function. The idea of using long-term steady state distribution as a ranking function
is also utilized in our paper. However, instead of using the labeled points as a query
in the power method, we either find the steady state distribution with a closed form
solution or start from the closed form solution and use the power method to find the
converged distribution.

In (Agarwal, 2006), the ranking preferences problem is solved by using the graph
Laplacian. A regularized hinge loss function is minimized via an optimization prob-
lem which resembles SVM’s quadratic programming formulation. Both undirected
and directed graphs are considered in (Agarwal, 20006). Basically, a regularizing real
function f is found in (Agarwal, 2006) that its values do not vary rapidly across the
neighboring vertices. For the undirected case, solution to the following problem is
sought in (Agarwal, 2006):

in {R; (f:)+ A£TLf
i, {Ry, (1) + t

where ¢}, is the hinge loss function. A QP model is solved in (Agarwal, 2006). The
solution for the QP contains pseudo-inverse Laplacian term. For the directed graph
case, the same algorithmic approach can be used as in the undirected case. However,
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a random walk that converges to a steady state distribution is used as in (Zhou et al.,
2005). The implementations in (Zhou et al., 2005; Agarwal, 2006) resemble the
PageRank algorithm from the random walk point of view. Teleporting is used again
to ensure the convergence of the random walk. Generalization properties are also
discussed in (Agarwal, 2006) by showing that column-space of the psuedo-inverse
of the Laplacian is an RKHS.

The graph Laplacian is applied to collaborative filtering problems in (Fouss et al.,
2007). The problem in (Fouss et al., 2007) is posed again as a random walk problem
on graphs and the pseudo-inverse of the Laplacian is used as a similarity measure
for collaborative filtering purposes. In the following section we will summarize the
spectral properties of Laplacian to present a closed form solution of the steady state
distribution of the random walk which upon we build our approach.

1.4 Spectral Graph Theory

As spectrum plays an important role in all physical sciences, the spectrum reveals
a lot about the underlying graph. The spectrum is simply equivalent to the eigen-
values of the corresponding matrix. Thus there is an important relationship between
the eigenvalues of the matrices and the corresponding graph structures. The study
between these two is known as spectral graph theory (Butler, 2006).

In this section, we will introduce some properties of Laplacian graphs from a spec-
tral graph theory perspective. There are three important matrices namely adjacency,
Laplacian (L) and normalized Laplacian (¥) when it comes to spectral graph the-
ory. As we give the definition above in Section 1.2, the adjacency matrix, W, can be
constructed in a binary manner.

We can count the number of walks of length k starting at vertex i and ending at
vertex j by simply using (W*) i,j- The trace of W is the sum of its eigenvalues i.e. 0
and the eigenvalues of W* are the eigenvalues of W raised to the kth power.

The traditional Laplacian L, as we defined above, is equal to D — W. There is a
special eigenvalue of L namely 0. Since the sum of the rows of L is 0, the eigenvector
1 corresponds to eigenvalue 0. All the other eigenvalues of L are nonnegative in other
words L is positive semi-definite (Butler, 20006).

Normalized Laplacian, .%, is defined as & = D12 p~1/2=p-1/2 (D— W)D_l/2 =
I—D'2WD~'/2, Elementwise . is defined as follows (Butler, 2006):

1 ifi=j;

—1 P . ..

L= i, if  is adjacent to j;
0 otherwise

As in the case of the Laplacian, the normalized Laplacian has also non-negative
eigenvalues. The difference is that in the Laplacian we can have the eigenvalues as
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large as possible, however the normalized Laplacian has eigenvalues in the range of
0 and 2, both ends are inclusive.

1.4.1 Random Walks

A random walk on a graph G is considered as a walk that starts from a vertex and
moves to an adjacent vertex through a randomly picked edge for a number of steps
- as many as required. Randomness is satisfied when the initial state does not affect
the current state anymore. In other words, knowing the initial state does not give any
significant information about the current state anymore (Butler, 2006). Thus we can
easily say that the walk is random if the probability of being in any vertex is equal to
its degree (Butler, 2006).

We can practically utilize the random walks to study ranking the data. The con-
vergence of the random walks will yield us the theoretical steady state distribution
of the vertices i.e. data points. In order to find the steady state distribution, we need
a transition matrix which is defined as D~'W. In other words,

0 ifiis not adjacent to j;

(D'W);; = { |

A if 7 is adjacent to j;

is the probability of moving from vertex i to vertex j. The probability distribution
after k steps will be £(D~'W)X.

The relationship between the normalized Laplacian and the transition matrix can
be given by the following equation.

D21 - 2)pV? = D V2(D~V2wp~1/2)p\/2 = p~lw.

If A is an eigenvalue of £ then (1 — A) is an eigenvalue of I — . (Butler, 2006)
with the same eigenvector. Particularly, since 0 is an eigenvalue of . then 1 must
be an eigenvalue of D~!W. The corresponding left eigenvector can be shown to
be 1D (Butler, 2006). The stationary (steady state) distribution of a well-connected
aperiodic graph is equal to

1D

T=—
Yody

In other words, random walk will converge to the above distribution. Let ¢; be an or-
thonormal set of eigenvectors corresponding to A; for .Z. Notice that 0 = Ay < A; <
... <A1 < 2. By above argument, ¢; is also related to 1 — A; for D '2wp-1/2,
Then it is easy to show that ¢y = 1D'/2 /\V/Ledy. Since we have the full set of or-
thonormal eigenvectors, we can use the idea of projections onto eigenspaces to write
(Butler, 2006)

D'PWDT2 =Y (1-2)6] ¢

i

To check how close we are after k-steps to convergence, we can use L?-norm
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(a) (b)

FIGURE 1.1
Two Moons Dataset Ranking Results

distance measure (Butler, 2006).

Siyyk AP w1212 = 1/2yk /2 _ 1D
707w Sl = LD (D R - S
I/ (;( )@ i) rzdell
I/ (;( )"0; 0i) rzde“

= /D7 2 (1= &) ol 6)D'2|
i£0
 max;\/d;
min iV d j '

The last inequality enables the usage of eigenvalues in approximating the error of
convergence after k-step. In addition, we can easily conclude that the more closely
eigenvalues are gathered around 1 for the normalized Laplacian, .#, the faster con-
vergence we should expect to the steady state distribution. Since the eigenvalues are
in between 0 and 2 for .2, the inequality max; |1 — A;| < 1 holds.

The term max;.o |1 — 4;| will be equal to 0 in two cases. If there are multiple
zeroes as eigenvalues and the largest eigenvalue is two. In the first case it can be
shown that the graph is not connected. In the second case, the graph is said to be
bipartite.

<max|l — A
i#0

1.5 Random Walk Framework and Experimental Evaluation

Even though by analyzing the spectrum of . we can come to some conclusions
about the underlying graph structure and the convergence of the steady state distri-
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TABLE 1.1

The Summary of the Datasets
Name # of Rows | Dimensionality | Type
Two Moons 200 2 | Classification
Bank Notes 200 6 | Classification
NBA 453 12 | Ranking
MLB 607 17 | Ranking
USPS 1200 100 | Classification

bution, we can still utilize a PageRank algorithmic approach to find the steady state
distribution 7 regardless of a spectral analysis.

In this section, we will show how we can utilize the theoretical steady state dis-
tribution of a well connected and aperiodic graph i.e. % in ranking the data. We
present the ranking results visually by plotting them with the first two principle com-
ponents of the each benchmark datasets. Our framework can be summarized as fol-

lows:

1. Given dataset X € R" construct adjacency matrix W and D
2. Compute the theoretical steady state distribution 7 = %

3. By using 7 as the query vector, run the PageRank algorithm to find the steady
state distribution

4. Visualize the ranking results using principal components.

As we mentioned in Section 1.3, we use the closed form solution of the stationary
distribution, 7 to start the PageRank algorithm. Thus instead of choosing a random
start, we prefer running the PageRank algorithm with 7 as the query vector.

There are several ways that we can construct the adjacency matrix W and D. The
neighborhood boundaries can be defined by k-nn and &-ball. Throughout the paper
we only utilize 8 nearest neighbors based on the Euclidean distance to determine the
neighborhood boundaries. In addition, W can be constructed by binary relationship,
Euclidean distance measure and heat kernel i.e. exp[—d?(x;,x;)/26?] between point
x; and point x;. We utilize the Euclidean distance measure in constructing W to
represent the strength of the relationship between points.

1.5.1 Evaluation of the Framework

We use some real and benchmark datasets to study the applicability of the framework
given above. The datasets vary in the size and type (i.e. task). The summary of the
datasets are given in Table 1.1.

We first run the ranking on a well-known toy problem two moons dataset. Note
that our framework does not involve any learning step, however we use the class
information for the visualization purposes. There are 200 hundred points in two-
dimensional space. Figure 1.1 depicts the ranking results of the two moons dataset.
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FIGURE 1.2

Bank Notes Dataset Ranking Results
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FIGURE 1.3

NBA Dataset Ranking Results

Basically Figure 1.1(a) visualizes the theoretical steady state distribution 7. The
steady state distribution found by PageRank is visualized in Figure 1.1(b). Since the
dataset is two-dimensional, the original dimensions are used in the plot. The figures
reveal that a smoother stationary distribution is found after running the PageRank
algorithm as one might expect. Due to the nature of ranking, we may consider the
points with higher ranking values as cluster centers. Thus an indirect clustering is
apparent from the figure. Notice that clustering is based on the geodesic distance
(see Section 1.2).

We apply our ranking framework to some benchmark datasets. The bank notes
dataset (Flury & Riedwyl, 1988) contains two hundred data points: 100 of them
belong to “forged” Swiss bank notes and 100 of them belong to “genuine” Swiss
bank notes. There are six features in the bank notes dataset. We also collected
the data from NBA rankings (2006-2007 season)* and MLB batting rankings (year
2006)". There are 12 statistics collected for the 453 NBA players compared to 17
collected for the 607 MLB players. The purpose of using sports ranking data is to see
how our framework will behave on naturally ranked data. Notice that sports rankings
are also a form of preferences e.g. MVP has better stats than all the other players. We

*www.NBA.com
Twww.usatoday.com/sports/baseball/stats-archive.htm
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(a) (b)

(© (d)

FIGURE 14
MLB Dataset Ranking Results

can then actually evaluate our framework on the preference (ordinal) data. We also
use well-known benchmark dataset USPS (Asuncion & Newman, 2007): one digit
(0) versus two other digits (2 and 7) which corresponds to 1200 total data points.

Figure 1.2 depicts the ranking results of the bank notes dataset. This dataset is
linearly separable. Since the dataset is high dimensional as in the other benchmark
datasets, the ranking values are plotted versus first two principal components. Again
the Figures 1.2(a) and 1.2(b) depict ranking results based on the theoretical station-
ary distribution 7 and stationary distribution after the PageRank algorithm respec-
tively. The issue of normalization (e.g. standard normalization) is highly important
in analyzing multivariate data. The Figures 1.2(c) and 1.2(d) depicts stationary dis-
tributions using standard normalized data (X) in finding adjacency matrix W.

Using sports ranking data from NBA and MLB, we can evaluate our framework
on “real” ranking problems. Sports rankings are highly popular domain for statistics.
In a short explanation, the players with better statistics rank higher. For instance for
the 2006 and 2007 NBA season Kobe Bryant has the best statistics, so he is ranked
number 1. For the NBA dataset, we created a new label to differentiate rookie players
from the regular player. So there are 77 rookie players and 376 regular players for the
2006-2007 season. Figures 1.3 and 1.4 depict the ranking results of our framework
on sports ranking data. As in the bank notes dataset, we use the standard normalized
data in parts (c) and (d) of the corresponding figures. After using NBA dataset, we
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(© (d)

FIGURE 1.5
USPS Dataset Ranking Results

get ranking results in Figures 1.3(a) and 1.3(b) that Peja Stojakovic has the highest
ranking. Notice that as in the case of web page ranking, the importance is determined
by the size of the inbound links to a node. Thus we can conclude that Peja Stojakovic
is in the middle of a larger cluster. For the standard normalized data (see Figure
1.3(c)), James Augustine who is a rookie player and is ranked number 438 has the
highest ranking result. Since this player is in the middle of a large group of players
who have poor performances - in other words the most of the statistics are near 0-, he
has the highest ranking results from our ranking framework. However, after running
PageRank algorithm (see Figure 1.3(d)) the player Pau Gasol who is ranked number
21 ends up with the highest ranking results according to our ranking framework.

Similar to NBA players, MLB players are also ranked with our framework in
Figure 1.4 according to their batting statistics. Matthews has the highest ranking
using unnormalized data in Figures 1.4(a) and 1.4(b). But Patterson and Reyes have
the highest rankings in Figures 1.4(c) and 1.4(d) respectively on standard normalized
data. Notice that these players are not the best ones in the league. Again the more
inbound connection the player has, the higher ranking results he gets.

We also use USPS dataset (Asuncion & Newman, 2007) in our experiments. As
mentioned above, we use only three digits in our experiment: one digit vs. two other
digits. There are totally 1200 data points in 100 dimensional space for our particular
experiment. Surprisingly, Figures 1.5(a) and 1.5(b) show that there is a clear ranking
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difference among digits. Although the rest of the datasets used in our experiments
have yielded mixed ranking results between classes, we observe a clear separation
in ranking results from one class to another one in USPS dataset. We can still see
the separation on normalized data in Figure 1.5(c), but we loose this separation after
running PageRank algorithm (see Figure 1.5(d)).

1.6 Conclusion and Future Work

We introduced a framework to rank the data using ideas from the graph Laplacian.
We also utilized this framework on some real and benchmark datasets. The approach
certainly has some interesting advantages. The important finding is that there is no
need to use a power method such as PageRank algorithm to find the stationary dis-
tribution when we deal with undirected graphs. We can simply use a closed form
solution for the stationary distribution. Even if the PageRank algorithm is used to
compute the stationary distribution, it is well know that it will converge for the di-
rected graphs. Therefore we can safely use the stationary distribution to rank the data
(i.e. nodes) by their structural effects on the graph.

Since the ranking framework introduced in this paper lists the nodes (states) of
the graphs by their structural importance, our ranking results can be used as an input
to develop some search algorithms on the graph domain. For example, a possible
application domain might be the famous traveling salesman problem. Similar net-
work problems such as transportation problem is also a likely application area of the
ranking results. In other words, we can develop certain search algorithms that use
ranking scores to search the solution space more efficiently.
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