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Abstract

Commercial recommender systems use various data mining techniques to make appropriate recommen-
dations to users during online, real-time sessions. Published algorithms focus more on the discrete user
ratings instead of binary results, which hampers their predictive capabilities when usage data is sparse.
The system proposed in this paper, e-VZpro, is an association mining-based recommender tool designed
to overcome these problems through a two-phase approach. In the first phase, batches of customer his-
torical data are analyzed through association mining in order to determine the association rules for the
second phase. During the second phase, a scoring algorithm is used to rank the recommendations online
for the customer. The second phase differs from the traditional approach and an empirical comparison
between the methods used in e-VZpro and other collaborative filtering methods including dependency
networks, item-based, and association mining is provided in this paper. This comparison evaluates the
algorithms used in each of the above methods using two internal customer datasets and a benchmark
dataset. The results of this comparison clearly show that e-VZpro performs well compared to dependency
networks and association mining. In general, item-based algorithms with cosine similarity measures have
the best performance.

Keywords: Recommender Systems, Association Mining, Dependency Networks, e-commerce, Collaborative
Filtering, Customer Relationship Management.

1 Introduction

Customers on the web are often overwhelmed with options and flooded with promotional messages for
products or services they neither need nor want. When users cannot find what they are searching for, the
e-commerce site struggles to maintain good customer relations.

Employing a recommender system as part of a site’s Customer Relationship Management (CRM) activ-
ities can overcome the problems associated with providing users with too little information, or too much of
the wrong information. Recommender systems are able to assist customers during catalog browsing and are
an effective way to cross-sell and improve customer loyalty.

In this paper, we will compare several recommender systems being used as an essential component of
CRM tools under development at Verizon. Our solutions are purposely for the current customers and current
products - recommendations for new customers and new products are out of the scope of this paper. Thus
every customer has at least some of the products in his/her profile (customer profile).

According to [Breese et al., 1998], there are two main approaches used in recommender systems: memory
and model-based systems. Memory-based recommender systems, such as correlation analysis and vector
similarity, search the customer database for customer profiles that are similar to the profile of the active
customer that the recommendation is made for. In this type of recommender system, it is important that
the customer database remain in system memory during the algorithm’s runtime. Model-based methods,
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such as Bayesian networks and Clustering models, approach the problem from a probabilistic perspective
to find the best product for a given customer profile [Breese et al., 1998] and need only keep the resulting
model in memory while the algorithm runs. The above methods will be described in the following sections.

Because memory-based approaches make predictions based on the local neighborhood of the active user
and the model-based approach bases its predictions on the similarities between items (products), recom-
mender systems can be grouped into user-based and item-based systems [Sarwar et al., 2001, Sarwar et al., 2000].
Note that since the summary of the similar customer profiles are stored in the memory rather than the profiles
themselves, clustering is considered as a model-based approach. Thus a user-based model is not considered
as a model-based one.

User-based systems, as the name suggests, use historical information to identify the neighborhood for
the active customer. Products are then recommended according to their similarities to this neighborhood.
Because user-based recommender systems use the customer profile data, they can incorporate demographics
data along with the historical purchase data. In contrast, item-based method use only historical purchase
data to identify similarities between different items. Unfortunately, when the size and the number of di-
mensions of a customer database are very large, the time required to perform a search utilizing user-based
methods may become prohibitive.

Neighborhoods in user-based algorithms are defined according to several measures. Two of these measures
are used frequently: Pearson’s correlation coefficient and cosine. Pearson’s correlation coefficient is computed
between the active customer and the rest of the customers in the database. Based on their similarity to
the active customer, k customers are selected. Statistics regarding this neighborhood are calculated later in
order to accurately recommend products. Pearson’s correlation coefficient between customer a and customer
b is computed using the following formula:

corra,b =
∑

i(uai − ūa)(ubi − ūb)√∑
i(uai − ūa)2

∑
i(ubi − ūb)2

(1)

where uai corresponds to the ath row and ith column of the user-item matrix and uai is equal to 1 if the
customer has the ith product or 0 otherwise. These binary values are equivalent to the user ratings (votes)
in the discrete valued data. An average vote for the customer a in this instance is indicated as ūa . It is also
possible to form the cosine between two customers (a and b) in neighborhood k using the following equation:

cos(~a,~b) =
~a ·~b

||~a||2 ∗ ||~b||2
(2)

The similarity measures defined in Equations 1 and 2 can also be used in item-based recommender
systems. In this case, similarities between the items are found first. During the prediction phase, the items
that are most similar to the items found in the active user’s profile are recommended. Because of the nature
of the binary user-item data, these similarity measures may perform poorly for prediction purposes. Several
modifications to these measures are proposed in [Breese et al., 1998] to improve the performance of user-
based recommender systems. In this paper, both correlation and cosine-based similarity measures are used
in the context of item-based recommender systems.

Dependency networks are used to increase the efficiency of collaborative filtering. Each node in a de-
pendency network represents an item (product). In this type of modeling, items missing from the customer
profile data are also considered, so that the models found by a dependency network will include some items
that a customer does not have. Dependency network modeling is available with Analysis Services of MS SQL
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Server 2000 and is also hard-coded into MS Commerce Server 2000 as the standard product recommendation
system. The dependency network model is discussed in Section 2.2.

Association mining models have been successfully used in product recommendation systems. In terms of
the memory and model-based taxonomy, association mining does not fit easily into either group. Finding
association rules based on historical data is similar to the methodology of the model-based approach, but
the size and exact search mechanisms between customer profile and association rules resemble item-based
approaches. In this manner, it is better to classify association mining as an item-based approach with higher
memory requirements. Our proposed method, e-VZpro, does not use the exact match between active user
profile and association rules, but instead searches for those rules that are the most similar with the higher
confidence levels.

When implementing a recommender system, there are two important issues to consider: the scalability of
the filtering algorithm and the quality of the recommendations [Sarwar et al., 2001]. Successful e-commerce
sites may have several million customers and product catalogs that include thousands of items. When
each customer is interested in and purchases only a small number of items, the user-item matrix used by
collaborative filtering algorithms may be very sparse - which, in turn, produces poor recommendations for
customers. To increase the quality of recommendations, a user-based collaborative filtering algorithm may
be introduced, which compromises scalability. It can be seen, then, that the quality of recommendations
and the need for scalability in a collaborative filtering system are often in conflict with each other.

This paper seeks to make four major contributions. We use a similarity measure for finding the best rule
instead of an exact match. We show that recommender systems based on association mining have stronger
predictive abilities when compared to dependency network systems. We also demonstrate how clustering
data improves the predictive qualities of association rules. Finally, we conduct an empirical study to compare
several algorithms on very sparse and binary user-item data.

The paper is organized as follows: Section 2 contains a brief discussion of some related work and
other recommender systems. The methodology of our approach is discussed in Section 3, along with a
toy example. There are two internal Verizon datasets and the MSWeb benchmark dataset (provided in
[Hettich and Bay, 1999, Breese et al., 1998, Heckerman et al., 2000]) for empirical comparisons of various
recommender systems. The summary of the study’s findings is reported in Section 4, along with details of
our implementation. Section 5 contains our conclusions and information on future work directions.

2 Related Work

The introduction of customer-centric management techniques and the emergence of a web-based economy
have forced the creation of a new generation of companies and the evolution of existing, traditional companies.
The deregulation of previously protected industries has also led to increased competition for many companies,
who now seek to improve their service quality and customer loyalty. Companies in every industry are finding
that their customers increasingly demand products, services, and solutions that are tailored to their specific
needs.

Rapid changes in internet technologies, especially the increasing availability of high-speed broadband
connections, allow customers to go online and easily research the products and services they desire. Cus-
tomers are able to compare competing items through corporate web sites, so much so that e-commerce sites
now play a role as important as the traditional customer touch-points such as call centers.

In every contact with a customer, companies need to offer their best products and services to gain
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customer confidence and retain consumer loyalty. The automated nature and frequent use of e-commerce
sites highlights the need for recommender systems that can assist the customer. But recommender systems
are also useful in call centers, where the staff is not always as experienced or trained in sales as would be ideal
and the system could assist the customer service and sales representatives. In these cases, a recommender
system should be designed in accordance with the company’s overall marketing strategy and a successful
system will also benefit employees by helping them attain larger performance bonuses.

2.1 Common Recommender Systems

In the past decade, recommender systems have been put to successful use in the publishing, news, film, music,
and video industries. Although “collaborative filtering” was first coined in [Goldberg et al., 1992], communi-
cations of the ACM featured several pioneering works in the third issue of Volume 40 [Resnick and Varian, 1997]
in 1997, including the GroupLens Project [Konstan et al., 1997], and Siteseer [Rucker and Polanco, 1997].

GroupLens Project is a recommender system based on the Usenet news groups wherein recommendations
are made according to the correlations among the news ratings provided by the users. Depending on the
user’s ratings, he/she gets recommendations of the unread messages and these unread messages can then be
sorted according to their predicted rankings. Although news groups are clustered well in terms of the content
and the user preferences, each user can only read and evaluate (rate) very few messages, which causes an
obvious sparsity problem for predictions.

Siteseer, on the other hand, recommends web pages based on bookmark similarities, eliminating the need
for user ratings. Early recommender systems had the advantage of working with communities wherein the
users are very similar to one another, as is the case with newsgroups and other internet-based communities.

A recent work by Shafer, Konstan, and Riedl [Schafer et al., 2001] summarizes the taxonomy of recom-
mender systems and their use in e-commerce applications. Recommender systems have the potential for
greater predictive ability than database marketing techniques, since recommendations - depending on the
method used - are made in highly similar, homogenous, and small neighborhoods rather than in segments
consisting of much larger populations. Although one can come up with an extremely successful segmentation
scheme to have very homogenous segments, it still lacks the finer granularity of personalized recommenda-
tions. Moreover, in practice segments correspond to very high level summary of customer base.

The recommender systems from six e-commerce sites, including Amazon.com, CDNOW, Drugstore.com,
eBay, MovieFinders.com, and Reel.com are given in [Schafer et al., 2001] as examples of the currently pop-
ular recommender systems. These e-commerce sites use a number of recommendations, such as Customers
Who Bought, Customers’ Ratings, Editors’ Picks, Top 100, and Customer Preferences. An important con-
sideration when deploying a recommender system is the method of recommendation delivery. An online,
real-time solution requires an extremely fast response from the system, but recommendations delivered via
e-mail do not require great speed, but must insure good quality.

The “keyword search” interfaces commonly used on e-commerce sites can be considered one of the sim-
plest types of recommender systems. Virtually all e-commerce sites have this feature by default, allowing
any customer to search for information related to specific products or product categories. High volume,
standardized products or highly recognized brands are the most likely to see significant benefits from using
a simple search utility as a recommender system.

Recommender systems based around “editors’ picks” are also very common. These systems require
“manual rules” for their product recommendations and the expert opinions are very useful in extremely
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connected communities with very similar member preferences.
A recommender system based on general public opinion is also useful in many domains. Basic statistical

summaries such as the most popular products or Top 100 music charts will be sufficient for this purpose.
Statistical summaries are best used for non-personalized recommendations [Schafer et al., 2001].

As we briefly mentioned in our discussion of user-based recommender systems in Section 1, the goal of
these recommender systems is to predict the utility of the product offerings to the active customer based
on the preferences of either a select group of customers or all customers [Breese et al., 1998]. As given in
Equations 1 and 2, the most popular methods for computing similarity are correlation coefficient and cosine.
Of course, the vector similarity is a näıve way of finding customers similar to the active customer; inverse
user frequency and case amplification are modifications to similarity methods that can be used to reduce
the weights of highly used (preferred) products. In cases where there are only a few votes or purchased
items common among users, similarity measure based on correlation may be problematic. Default voting, to
assign minimal weights to some items, was proposed in [Breese et al., 1998] as one method to prevent poor
performance in the course of intersecting common votes (purchased products) and, instead of the intersection,
the union of voted items could be used [Breese et al., 1998].

A number of successful e-commerce sites have employed user-based methods with the assumption that
each customer or individual belongs to a larger group of customers [Karypis, 2001]. The scalability and
online performance of these algorithms are considered as the main limitations and the sparsity of the user-
item matrix may require the use of some of the remedies mentioned above, such as inverse user frequency.
On the other hand, the sparseness may result in shortened recommendation times with the implementation
of the sparse matrix operations for calculating similarities.

Item-based recommender systems are very effect when a large customer database is available [Sarwar et al., 2001,
Karypis, 2001]. Like user-based recommender systems, cosine and correlation based similarities are used to
find the item similarities. Conditional probability [Karypis, 2001] is another way of computing item similari-
ties and modified conditional probabilities and adjusted cosine similarities [Sarwar et al., 2001] are often used
to minimize the effect of high-frequency items. Frequency scaling is a common method used in information
retrieval systems as well, and remarkably short recommendation times have been reported [Karypis, 2001]
when using this methodology in item-based recommender systems. In [Karypis, 2001] a regression model
was used to predict the recommendations after finding items similar to the active customer profile, showing
that item-based recommender systems compromise very little on recommendation quality while providing
substantial gains in computational efficiency [Sarwar et al., 2001].

Statistical and Machine Learning techniques have been successfully used for the model-based recom-
mender systems. Indeed, collaborative filtering is a major research topic in statistical and machine-learning
communities. The probabilistic nature of the problem requires robust and efficient techniques to recom-
mend products accurately. In the following subsection, we will discuss a well-known collaborative filtering
technique based on the dependency networks introduced in [Breese et al., 1998, Heckerman et al., 2000].

2.2 Dependency Networks

Bayesian networks have been successfully used in the visualization of the predictive relationships between
the variables of a particular dataset. There is a problem, however, in that Bayesian networks can be very
confusing for an untrained person to interpret [Heckerman et al., 2000]. Dependency networks are proposed
in [Heckerman et al., 2000, Breese et al., 1998] to represent predictive or correlational relationships that
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exist in data in a more easily comprehensible manner. On the other hand, it is computationally very easy
to construct a dependency network compared to the effort required to create similar Bayesian networks. In
addition, it is a simple task for any probabilistic classification or regression model [Heckerman et al., 2000]
to estimate the conditional distribution of each variable in relation to the rest of the variables. Because
efficient probabilistic classification and regression models exist, it takes less time to construct a dependency
network than to construct a comparable Bayesian network.

To illustrate the computational efficiency of the dependency network, we have adopted the following
simple example from [Heckerman et al., 2000]. Assume the problem is to find the dependency networks from
the domain X = (X1, X2, X3). In this case, all that is required is to estimate three conditional probability
distributions p(x1|x2, x3), p(x2|x1, x3), and p(x3|x1, x2). These can be estimated using any classification
method, such as logistic regression, neural networks, and probabilistic decision trees. For illustration pur-
poses, assume these methods are capable of variable selection and that one of these methods, let’s say the
probabilistic decision trees, found that X1 is not a significant predictor of X3 and X3 is not a significant
predictor of X1. In this case, we can easily construct the following dependency network: X1 ↔ X2 ↔ X3.
This example shows how dependency networks are constructed in a very precise and simple manner. Note
that the variable selection determines the structure of the dependency network [Heckerman et al., 2000].

Though constructing the dependency network is computationally very reasonable in general, inconsistent
conditional probability distributions - due to the heuristic search and finite-data effects - are potentially major
drawbacks to this method [Heckerman et al., 2000]. Nevertheless, having large datasets in this particular
application gives us the confidence to apply a collaborative filtering based on the dependency networks,
since strong inconsistencies will be rare when dealing with large datasets. Thus, we expect that resulting
dependency networks will be “almost” consistent according to the discussion in [Heckerman et al., 2000].
Another possible issue is that, in some cases, it is prohibitive to construct dependency networks like other
model-based methods. Moreover, each additional data requires full training as in the case of many model-
based methods. In the following subsection, we will briefly discuss some of the other model-based approaches.

2.3 Other Model-Based Recommender Systems

A very early work on recommender systems based on machine learning algorithms is introduced in [Billsus and Pazzani, 1998].
The concept is to first manipulate the data by transforming the user-item matrix into Boolean feature vec-
tors in order to use Singular Value Decomposition to find important features. Finally, a neural network is
trained based on these important features - unfortunately, this method lacks the scalability offered by other
methodologies.

Clustering is successfully used to summarize and analyze data in many different domains. As a natural
extension, it has been used in various recommender systems [Ungar and Foster, 1998, Breese et al., 1998] by
grouping customers with similar profiles into the same cluster and then recommending products based on the
popularity of each product within that cluster. Expectation-Maximization (EM) based clustering algorithms
are used in both [Ungar and Foster, 1998, Breese et al., 1998] of the above methods. The Bayesian Clustering
method performed very well in terms of accuracy in [Breese et al., 1998] as an alternative to the dependency
networks and user-based methods.

A hybrid method based on Personality Diagnosis (PD) is proposed in [Pennock et al., 2000]. In this
method, the personality type of the active user is determined and used to compute the probability of
the active user having new items. PD-based collaborative filtering requires using all of the available data
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throughout the process, though new data can be added incrementally [Pennock et al., 2000] to adjust model
parameters.

Association mining is best used to perform traditional market basket analysis where the rule discovery is
conducted to uncover the associations between various products. Recommender systems based on association
mining are very common in e-commerce applications [Sarwar et al., 2000]. The algorithm Apriori and its
derivatives are commonly used in association mining. The implementation in this paper, however, differs
from previous approaches in an important point - rather than finding exact matches between the active
user and the rule base, e-VZpro finds the most similar rule with the highest confidence rate by scoring
each rule in terms of both its similarity to the active user and its confidence rate. Association mining can
also be used to predict certain phenomenon (classification problem); a case study in the telecommunication
industry [Ali et al., 1997] uses association mining to predict whether manual assistance will be required for
a specific order. Based on the Universal Service Order Codes (USOCs) attached to an order, a prediction
model determines the probability of the need for manual assistance with that order. We postpone further
explanation of association mining until toy example in the next section. In the following section, we will
discuss the details of methodology used in proposed algorithm.

3 Methodology Used in e-VZpro

The main purposes of this section are to introduce the methodology used in e-VZpro and to give a simple
example. There are two phases to our methodology: Discovery and Scoring. In the first phase, association
mining is used to discover the rules that exist in historical customer data in a manner similar to that used
in item-based recommender systems. During the second phase, a scoring algorithm searches the rule base
according to the active customer profile to find products that can be offered to that particular customer.
Since all rules are kept in memory and a subset of the rules are scored sequentially, this phase is most similar
to the user-based recommender systems discussed earlier.

In the second phase, each product that the customer does not have is scored by finding corresponding
rules for the active product. Scores for the active product are then computed by multiplying the similarity
measure between the rules and the active customer profile by the confidence rate of the rules. More formally
scores are computed using the following equation:

score(u, r) = similarity(u, r)× confidence(r) (3)

In Equation 3, u and r represent the active user and the rule, respectively. The similarity measure is
computed based on a normalized Euclidian distance measure given in following equation.

similarity(u, r) = 1−
√∑

i:ri>0(ui − ri)2

4 ∗∑
i:ri>0 ri

(4)

The rationale behind this formulation is as follows: Euclidian distance is a measure of dissimilarity
and, in order to have similarity measures between 0 and 1, it is necessary to normalize Euclidian distance
by dividing it by the maximum discrepancy and then subtracting this normalized distance from 1. Because
some products may not be available in certain areas, e-VZpro was designed to handle these cases by including
an option in the customer profile for “-1” to represent an unavailable product in addition to the standard
entries of “0” and “1”. Thus, the maximum discrepancy might be equal to 4 ∗∑

i:ri>0 ri. Where a perfect
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match between customer profile and rule are found, the similarity is equal to 1. Again, u and r represent
the active user and the rule respectively in Equation 4.

Because the rules and customer profiles are composed of 0’s and 1’s it is problematic to use correlation
coefficient and cosine directly. Since the rules are sparser than customer profiles, using correlation coefficient
or cosine as a similarity measure is misleading. As the algorithm tries to find rules that are similar to the
active user profile, the similarity measure between a rule and the active customer profile is dependent on
the magnitude of the left-hand side of the rule. Association rules might have multiple items on the right
hand side of the rules but, due to the nature of the prediction problem in this paper (recommendations are
independent of one another and customers will select only one of several recommendations) we only use rules
that have singleton right-hand sides.

In practice, there will be several rules that their right hand sides point to the same product. But these
rules might certainly have different confidence rates. Thus their similarities and confidence rates will be
different i.e. scores from these rules will vary. The highest score for offered products determines the ranking
of each product. In addition, revenue information (recurring charges) can be used to weight the scores to find
the final ranking of each product - this method is not explored in this paper. Finally, the Top-N products
as determined above are offered to the active user. While scoring is done on the fly, association mining is a
batch process and, thus, e-VZpro clearly resembles both the memory-based and user-based methods. In the
rest of this section, we will explain our methodology with a toy example.

Given the customer purchase data (such as in Table 1), association mining, also known as market basket
analysis, discovers the rules (relationships) that exist within the historical customer purchase (service order)
data. Each of the rules include “if” clauses by default and the structure of the rules is as follows: If the
customer purchases Product A, then with C% probability he/she will buy Product B. This probability is
called the confidence rate. More formally, the confidence rate can be computed as:

C =
frequency(A ∪B)

frequency(A)

where A ∪ B indicates transactions that include both Product A and Product B. Confidence rate is also
equivalent to the conditional probability of a customer having Product B if they already have Product
A. Another important statistic in association mining is the support level, which is essentially equal to the
fraction of transactions that have both Product A and Product B. Thus, the support level S can be computed
as:

S =
frequency(A ∪B)

T

where T is equal to the total number of transactions. The support level is the most important factor when
pruning the association rule base.

To depict our analysis with a simple example, a toy problem is provided in Table 1. USOCs given in
Table 1 are actual values extracted from our databases. The descriptions of the USOCs are found in Table
2.

After the analysis with 100% confidence rate, we found the following rules using association mining:
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Table 1: Sample Customer Data

Cust-id USOC
1 47036
1 41368
1 55822
2 42267
2 41368
3 47036
3 55822
3 42267
4 42267
4 55822
4 47036
4 41368

Table 2: Descriptions of USOCs used in the Sample Data

USOC Description
41368 Personal 800 Number
42267 Basic Voice Mail Service
47036 Caller ID -Name and Number
55822 Non-published Listing

47036 → 55822
55822 → 47036
47036 41368 → 55822
41368 55822 → 47036
47036 42267 → 55822
55822 42267 → 47036

For example, the first rule implies that if the customer has Caller ID - Name and Number, then it is 100%
likely that he/she will have or by Non-Published Listing. On the other hand, the last rule implies that if
the customer has both Non-published Listing and Basic Voice Mail Service then there is a 100% probability
that he/she will have/buy Caller ID - Name and Number. Assuming that we want to offer a product to a
customer with only the Basic Voice Mail Service in his/her profile, we can offer the customer any or all of
the other three products. Since Basic Voice Mail Service is not found on the left side of any of the first 4
rules, they receive the lowest scores. The first two rules have a similarity measure of 1 −

√
1

4∗1 = 0.5. The

third and fourth rules have a similarity measure of 1 −
√

1+1
4∗2 = 0.5. But the last two rules are some how

similar to the customer profile. Their similarity measures are 1−
√

1+0
4∗2 = 0.6465. The final scores are also

equal to 0.6465 because the confidence rates are equal to 1 for both rules. Finally, we are able to offer the
Caller ID - Name and Number as well as the Non-Published Listing.

We used 100% confidence rating to illustrate the algorithm; while it would have been possible to use a
lower confidence rate, it would have required a prohibitive number of rules to illustrate in this toy example.
An empirical study is provided in the next section to compare e-VZpro and dependency networks.
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4 Experimental Results

As was mentioned in the previous sections, there are many factors that affect the performance of a given
recommender system. Previous empirical studies [Breese et al., 1998, Karypis, 2001, Sarwar et al., 2001]
indicate that item-based approaches are very scalable and result in very negligible losses in recommendation
quality when compared to user-based approaches. Our goal in this section is to demonstrate that association
mining-based recommender systems are comparable with the well-known recommender system introduced
in [Breese et al., 1998, Heckerman et al., 2000] and other item-based recommender systems.

Problems studied in this paper do not include user ratings, as it is simple to determine whether or not
users have a specific product. Thus, the user-item matrix is designed to include only 0-1 entries. It is
assumed that all products are available to all customers in this study and that users cannot have multiple
instances of the same product.

Three different datasets were used in this study - two of these datasets contain internal Verizon customer
information and the third is the MSWeb dataset from the UCI KDD archive [Hettich and Bay, 1999]. One
of the Verizon customer datasets was sampled from a pool of residential customers located in the west-
ern states (WESTDB2) and the second dataset was sampled from a pool of general business customers
located in the state of Texas (GENBUS). The samples were taken from the working telephone numbers
(WTN) from the two different data sources. In reality, customers can have multiple telephone lines, but
the current study treats each line as a unique customer. A transaction (customer profile) is defined as a
set of products (services) that belongs to an associated customer (WTN). The MSWeb dataset was used
in [Breese et al., 1998, Heckerman et al., 2000] and details about this dataset can be found there. We use
MSWeb as a benchmark dataset that consists of user activities on certain Microsoft pages.

As we mentioned in the previous section, the orders in the telecommunication industry are processed at
the USOC level. Many orders contain multiple USOCs and, depending on the geographical location, price,
discount, and regulations, the same product may have different USOCs. Some USOCs are associated with
certain products - such as Caller ID and Call Waiting - but may have no additional charges at all. On the
other hand, certain products may have different features and different pricing. Before performing any type
of analysis for this study, the data was prepared by grouping the USOCs into 70 meta-product groups and
eliminating the most frequent products such as residential and business lines. Some products did not have a
high enough frequency to be included in the analysis, so the WESTDB2 and GENBUS datasets consist of 51
and 61 product groups respectively. The characteristics of the datasets are summarized in Table 3. MSWeb
originally had 5,000 test instances, but we omitted the test cases that had only one page in the user profile.
The sparsity of each dataset is defined as 1− nonzero entries

total entries in [Sarwar et al., 2001].
The original WESTDB2 and GENBUS datasets have 174,933 and 205,882 customers respectively. Since

we do not have repeating customers in these datasets and customer profiles are constant at the time of
association mining, a customer profile can be considered as a transaction. As with the evaluation of any other
machine learning method, we divided our datasets into two subsets: training and test data. Approximately
85% of the original data was reserved as the training data; those transactions with at least 2 products in
the customer profiles were used as the training data from the reserved data. The training data was used
to construct the dependency networks or to discover the association rules used to create the rule base for
e-VZpro. The remaining data was used as test data.

Because our focus in this paper is to compare the predictive abilities of two different recommender
systems, we adopted the all-but-1 protocol used in [Breese et al., 1998]. As a significant amount of the test
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Table 3: Summary of the Datasets

Dataset
Statistics WESTDB2 GENBUS MSWeb
Number of Distinct USOCs 1789 1602 NA
Number of Transactions (WTNs) 174933 205882 37711
Number of Transactions in Training Data 130379 151921 32711
Number of Transactions in Test Data (|U | > 1)1 22582 18913 3453
Ave. Number of Items across All Data2 3.82 ± 2.2 2.85 ± 1.6 3.02 ± 2.5
Ave. Number of Items across Training Data 4.21 ± 2.1 3.12 ± 1.5 3.02 ± 2.5
Ave. Number of Items across Test Data 4.21 ± 2.1 3.13 ± 2.1 3.95 ± 2.5
Number of Items in Data 51 61 294
Number of Nonzero Entries in Training Data 548944 473887 98654
Sparsity of Training Data 0.9174 0.9489 0.9897
Number of Nonzero Entries in Test Data 98446 84887 13644
Sparsity of Test Data 0.9145 0.9264 0.9866
Notes:
1 |U | is equal to the number of products in a transaction (customer profile) .
2 Standard Deviations are reported after ± symbols.

data is only suitable for the all-but-1 protocol, other test protocols were not used. Some of the products
might be used in the models to predict for other products, but we chose to not offer such products to the
customer through the recommender system in this study. For example, Product 26 in our dataset is not
offered by the recommender systems in this study, so the test data contains only those transactions that
have at least 2 products other than Product 26 before one of the products was removed according to the
all-but-1 protocol.

The accuracy rate of the systems was defined as number of successes
number of transactions where predicting the removed product

from the test data within the Top-5 offers is defined as a success. Evaluating less than 5 predictions will result
evidently lower accuracies. Choosing Top-5 recommendations is operationally motivated not arbitraryly. We
are required to show as many recommendations as possible to the clients by utilizing the very limited area
in the user interface. The predictive abilities of the two different methods are evaluated by their accuracy
rates on the test datasets. The specific details of the dependency networks implementation are given in the
following subsection.

4.1 Implementing The Dependency Networks

Constructing the dependency networks is an important feature of MS SQL Server 2000. Unlike other mod-
eling software, SQL Server allows users to construct multiple prediction models in a single step using the
same dataset. Collaborative filtering is a special implementation of this type of modeling that works very
well and is easy to construct. MS Commerce Server 2000 also comes with a recommender system that uses
dependency networks, but is limited by its ability to use only 20,000 cases. It was decided that MS Commerce
Server 2000 would not be used in this study due to this limitation.

Training the dependency-networks-based recommender systems took around 48, 74 and 194 minutes
of computation for the WESTDB2, GENBUS, and MSWeb datasets respectively. All computations were
performed on a dedicated SQL Server 2000 machine with two Pentium III 1 GHz CPUs and 4 GB of physical
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memory. Note that the current data mining models in SQL Server 2000 are not parallel algorithms. The
resulting dependency networks are depicted in Figure 1 and Figure 2.

An important visualization feature of dependency networks is that they can be filtered to remove the
weaker links [Heckerman et al., 2000] and related products are shown closer to one another. Due to the
inadequate frequencies of certain products, dependency networks have no links for some products as seen in
Figure 1. Dependency networks resulted in 41.93%, 47.59%, and 31.07% accuracy rates for the WESTDB2,
GENBUS, and MSWEB test datasets respectively.

It should be noted this paper uses collaborative filtering based on dependency networks as a benchmark
method. The superiority of this method is discussed in [Breese et al., 1998, Heckerman et al., 2000]. In the
MS SQL Server 2000 data mining models, prediction is defined as a join operation [Microsoft, 2000] and is
thus optimized very well, taking less than 5 minutes to find the recommendations for the test datasets. Of
course, there is a need for post-processing to find the Top-5 offers. The specification for the Prediction Join

can be found in [Microsoft, 2000].
For many cases from the test data, we encountered that dependency network models returned NULL

predictions, meaning the recommender systems did not find any product to offer some customers. The
fractions of the NULL predictions are 26.13%, 36.88%, and 41.47% for the WESTDB2, GENBUS, and
MSWeb datasets respectively - these null predictions were not considered as successes. The accuracy rates
reported above reflect this reality and a similar evaluation approach was used for e-VZpro.

The results from our experiments with e-VZpro and association mining are reported in the following
section. Several experiments were conducted by changing the support level (S) and confidence rating (C).
The results indicated that e-VZpro is very competitive with the collaborative filtering system that uses the
dependency networks approach. An extension of e-VZpro and association mining that clustered the data
prior to the analysis also improved the results significantly.

4.2 Implementing e-VZpro and Association Mining

The current implementation of e-VZpro was designed to investigate the predictive ability of the method.
As reported in [Karypis, 2001] we implemented e-VZpro and association mining in sparse matrix format,
keeping the rules and customer profiles in sparse matrix format in memory. Customer profiles from the test
datasets were read one at a time, which reduced the memory requirements for the experimental software,
but also had some negative impact on the I/O times. As indicated in previous sections, association mining
has been used successfully as a recommender system and experimental results for the traditional association
mining recommender system are reported.

The results from the experiments with e-VZpro and association mining on the WESTDB2 and GEBUS
datasets are show in Table 4 and Table 5, following. As previously mentioned, support level (S) and confi-
dence rate (C) are important parameters in association mining. To investigate the effects of changing these
factors, the association rules were generated according to 12 different parameter sets. We used 3 different
support levels (0.01%, 0.05%, and 0.1%) and 4 different confidence rates (55%, 60%, 65%, and 75%). Cor-
responding number of rules are also reported in Tables 4 and 5 for the WESTDB2 and GENBUS datasets
respectively. Decreasing the support level increases the number of rules and increasing the confidence rate
decreases the number of rules for any given support level. In a sense, support level and confidence rate are
used as two important knobs to adjust the overfitting or underfitting of e-VZpro. Certainly decreasing both
support level and confidence rates will generate more rules. The more rules we have, the more precise rec-
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Table 4: Accuracy Results from e-VZpro and association mining on WESTDB2 dataset

e-VZpro Assoc. Mining
Support Confidence Number of Time Accuracy Time Accuracy

Level (%) Rate (%) Rules (sec.) (%) (sec.) (%)
0.01 55 394203 11915 52.99 8442 45.03
0.01 60 345173 10077 52.28 7221 36.50
0.01 65 294471 8498 51.92 6044 26.62
0.01 75 209445 6045 49.88 4182 14.08
0.05 55 63611 1848 55.61 1390 44.54
0.05 60 53396 1533 53.13 1152 36.00
0.05 65 43786 1253 50.24 945 26.04
0.05 75 27049 796 47.64 602 13.39
0.1 55 26850 741 58.87 563 44.19
0.1 60 22040 599 55.66 455 35.68
0.1 65 17758 477 53.06 364 25.77
0.1 75 10366 292 51.11 223 13.04

ommender system we can build. But excessive number of rules will reduce both computational performance
and the accuracy due to the overfitting. Finding right combinations of support level and confidence rates is
certainly a tradeoff decision.

The running time of e-VZpro and association mining (in seconds) is reported in Table 4 and Table 5.
The experiments were conducted on the same machine as dependency networks based recommender systems.
Because computational times are dependent on the number of rules, the advantage of e-VZpro should be
apparent with a smaller number of association rules. Note that it took only a few minutes to discover
the association rules for any experiment in this study and the reported times do not include the discovery
time. When the number of rules is less than the number of customers in the training data, e-VZpro is
computationally better than memory-based methods. For the best results, e-VZpro ended up using 26,850
and 92,389 rules on the WESTDB2 and GENBUS datasets, respectively; association mining takes less time
than e-VZpro. The accuracy results are shown in Tables 4 and 5 and best performances are shown in bold.

e-VZpro and association mining were run on the MSweb dataset using support level and confidence rate.
We arbitrarily chose 0.05% and 55% as support level and confidence rate. e-VZpro and association mining
used 30,181 rules to recommend pages for the MSWeb dataset. e-VZpro took 149 seconds to run and resulted
in 50.51% accuracy while association mining took 115 seconds to and achieved 31.94% accuracy.

These results clearly indicate that e-VZpro made consistently better predictions when compared to as-
sociation mining. For the WESTDB2 dataset, e-VZpro performed remarkably well (58.7% compared to
41.93%) and its best result, (46.20% compared to 47.59%) for the GENBUS dataset was very close to the re-
sult of the dependency networks based recommender system discussed earlier. Note that e-VZpro performed
very well for the less sparse dataset. At a fixed support level, increasing the confidence rate diminishes the
accuracy rates of e-VZpro in general; it can be concluded that e-VZpro can make better predictions when
its association rules are discovered at lower confidence rates. Changing confidence has a greater effect on
performance of association mining than changing the support level and rules found at lower confidence levels
have better predictive abilities.

Since similarity is used in e-VZpro rather than exact match, the rules with at least one item (product)
matching in left-hand side will be considered. There will be at least one rule that will always satisfy
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Table 5: Accuracy Results from e-VZpro and association mining on GENBUS dataset

e-VZpro Assoc. Mining
Support Confidence Number of Time Accuracy Time Accuracy

Level (%) Rate (%) Rules (sec.) (%) (sec.) (%)
0.01 55 103392 2856 46.11 2165 35.66
0.01 60 92389 2561 46.20 1927 34.58
0.01 65 82476 2269 46.18 1714 33.16
0.01 75 65491 1807 43.97 1371 28.51
0.05 55 13127 333 44.58 253 35.33
0.05 60 11642 290 44.39 221 34.15
0.05 65 10335 255 44.35 194 32.77
0.05 75 7491 183 41.96 139 28.18
0.1 55 5727 133 44.32 98 35.05
0.1 60 5101 115 44.08 83 33.88
0.1 65 4483 97 43.85 71 32.59
0.1 75 3196 67 40.96 50 28.10

this condition. Thus e-VZpro does not return NULL predictions. Association mining, however, resulted
in 12.86%, 38.98% and 41.01% NULL predictions for the WESTDB2, GENBUS, and MSWeb database
respectively, pointing out a significant difference between e-VZpro and association mining.

We can also easily determine that the support level used for the GENBUS dataset is not low enough.
In other words, there are not sufficient association rules to represent the underlying relationships that exist
within the data. There are two approaches to handling this problem. We can either lower the support level
to generate a larger set of association rules, or we can cluster the training data and find the association rules
for each of the clusters separately. This situation will definitely reduce the computational performance of
e-VZpro and the following subsection will investigate the effect of clustering on the predictive abilities of
e-VZpro and association mining.

4.3 Using Clustering in Association Mining

As noted above, to prevent the possibility of poor performance of e-VZpro and association mining in terms of
accuracy at low support levels and to investigate the clustering approach, we grouped the user-item matrix
of the datasets into 5 clusters. This was accomplished using the clustering algorithm provided by MS SQL
Server 2000 and we intentionally chose a small number of clusters to keep the experiment within manageable
levels. For the sake of simplicity, we set the confidence rate to 55% for all datasets.

As shown in Tables 4 and 5, e-VZpro and association mining take longer to run when there are too many
rules. In contrast, these methods perform poorly with very few rules but take a very short time to run.
Because of the behavior of the clustering algorithm in MS SQL Server 2000, the first cluster always has the
highest number of cases with later clusters containing less data. The last cluster, Cluster 5 in our case, has
the lowest number of cases, but very dense data. In other words, the first cluster has the greatest number
of cases, but the fewest number of products included in customer profiles. Cluster 5, on the other hand, has
a very small number of customers with highly dense profiles containing numerous products.

Because of these discrepancies, it was necessary to set the support levels of the clustered data differently.
For the WESTDB2 dataset, support levels were set to 0. 01%, 0.1%, 0.1%, 0.1%, and 0.1% respectively, for
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Table 6: Results on Clustered Data

WESTDB2 GENBUS MSWeb
Accuracy % No of Accuracy % No of Accuracy % No of

e-VZpro Assoc. Cases e-VZpro Assoc. Cases e-VZpro Assoc. Cases
Cluster 1 67.89 36.23 14529 65.43 33.01 8930 51.81 22.56 1241
Cluster 2 72.27 50.30 3549 68.35 34.81 6078 51.64 32.48 856
Cluster 3 69.59 67.69 1825 60.34 54.00 1702 56.67 39.82 540
Cluster 4 66.89 61.75 1676 71.45 47.56 1373 47.39 39.78 460
Cluster 5 61.12 60.92 1003 63.98 59.88 830 47.47 46.63 356

Overall 68.34 43.97 22582 66.28 37.71 18913 51.49 32.49 3453

Table 7: Top-5 Recommendations for the Test Case Number 3330

Method Recom. 1 Recom. 2 Recom. 3 Recom. 4 Recom. 5
e-VZpro 15 - 1 8 - 0.6723 9 - 0.6723 46 - 0.6655 29 - 0.6631
Dependency Networks 29 - 0.7737 40 - 0.5048 NULL NULL NULL

each of the clusters from 1 to 5. These values were set to 0.001%, 0.01%, 0.01%, 0.01%, and 0.1% for each
of the clusters in the GENBUS dataset and 0.05%, 0.05%, 0.05%, 0.05%, and 0.1% for the MSWeb dataset.
As seen from these support levels, higher levels were set for Cluster 5 in each dataset to prevent an excessive
number of association rules.

Results after running e-VZpro and association mining on clustered data are reported in Table 6. The
accuracy of e-VZpro and association mining with the number of test cases in each of the clusters is reported
in Table 6 on WESTDB2, GENBUS, and MSWeb datasets. Overall accuracy of the e-VZpro has jumped
significantly on WESTDB2 (From 58.87% to 68.34%) and GENBUS (from 46.20% to 66.23%) after clustering
the data.

The results of association mining either improve or degrade a bit after clustering. Both e-VZpro and
association mining improve somewhat after clustering on the MSWeb dataset. We conclude that clustering
data and then finding association rules for each cluster helps to improve e-VZpro significantly on the less
sparse data but has no effect on very sparse data. This point deserves greater investigation to determine if
clustering algorithms perform less effectively on data with a large number of dimensions. In short, e-VZpro
resulted in significantly better predictions than the dependency networks based recommender systems. In the
following subsection we discuss the differences between the two methods and their effects on the corresponding
performance of these two methods.

4.4 Further Discussions on e-VZpro and Dependency Networks

To better depict the underlying methods, this section contains a test case from the WESTDB2 dataset. The
test case number 3330 originally had Product 1, Product 26, Product 29, and Product 51 in the profile.
Product 29 was randomly removed from the customer profile according to the all-but-1 protocol. Thus the
remaining products were used to find the Top-5 recommendations given in Table 7 for this customer profile.

In Table 7, the numbers on the left side and the right side of the hyphen correspond to the recommended
product and the probability (Score) of the prediction. Because both methods predicted Product 29 within
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the Top-5 recommendations, they are both successful for this test case. e-VZpro used the association rule
Product 1, Product 26, Product 51 → Product 29 with a confidence rate of 0.6631. Since the rule and the
customer profile match exactly, the similarity between this particular profile and the rule is equal to 1. The
score for this case then becomes 0.6631 for Product 29.

Based on the decision tree depicted in Figure 3, dependency networks predicted Product 29 as the top
recommendation. From the Node Path window, we can see that the corresponding rule for this particular
case is “if Product 1 > 0.334 and Product 26 > 0.221 and Product 33 ≤ 0.159 and Product 51 > 0.147 then
with 0.7736 probability the case 0.606 (means 1) and 0.2248 probability the case is 0.106 (means 0)”. Since
0.7736 is greater than 0.5, the prediction is 1 for this particular case.

Many data mining and machine learning models might fail to perform well in certain cases due to the
overfitting or the underfitting problems. Recommender systems are no exception and changing the support
level and confidence rate in our approach controls the degree of the training process. Pruning is an important
step in constructing decision trees to prevent overfitting. The decision tree model used in MS SQL Server
2000 does not allow the users to prune the trees, as the model is not flexible enough to allow the use of any
pruning method. As it is seen from the unbalanced and very deep decision tree in Figure 3, the decision
trees found in MS SQL Server 200 are highly overfitted. The only option we have in this case is to limit the
sample size, which explains why MS Commerce Server 2000 has an upper limit on the number of cases used
in training the recommender system. Overfitting could also be one of the reasons that recommender systems
based on the dependency networks had poor results.

Overfitting in the dependency networks also caused the NULL prediction problem as was indicated in
Section 4.1. This resulted in a poor performance compared to the e-VZpro, which is designed not to predict
NULLs. However, higher NULL prediction rates in the dependency networks model indicate that the quality
of the recommendation is higher for regular recommendations.

One should consider the difference between the product recommendation problem based on the historical
purchase data and on the customer ratings. Since training e-VZpro depends on the association mining, it is
not clear how e-VZpro is used when ratings are present. Recommender systems based on the dependency
network are very straightforward to use for these issues and show remarkable results [Breese et al., 1998,
Heckerman et al., 2000].

The biggest advantage of e-VZpro over dependency networks is the very short training times of e-VZpro.
Practically all the training time, e.g. discovering the association rules, of e-VZpro is negligible. However
the prediction time of the dependency networks is very short due to their very small stored models. The
optimized nature of the Prediction Join operation in a relational database environment also contributes to
these short prediction times [Microsoft, 2000]. Nevertheless, e-VZpro performed well in terms of computation
time when using the sparse format.

Experiments were also run using other well-known recommender systems. To avoid excessive compu-
tational times associated with the user-based methods, only item-based methodologies were used. In the
following subsection, we report results from the simple, yet very powerful, item-based recommender systems
that we tested. Our results confirm again that these methods are very robust and superior to others. The
algorithm based on the cosine similarity performed the best or second best across all datasets.
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Table 8: Results from Cosine, Correlation and Popularity Based Recommender Systems

WESTDB2 GENBUS MSWeb
Method Accuracy Time Accuracy Time Accuracy Time

(%) (sec.) (%) (sec.) (%) (sec.)
Cosine 73.74 5 73.39 7 62.41 6
Correlation 46.55 6 44.31 7 50.51 6
Popularity 64.37 4 75.62 5 50.13 4

4.5 Results from Other Recommender Systems

This section contains the results from item-based algorithms using similarity measures based on cosine
(Equation 2) and Pearson’s correlation coefficient (Equation 1) in this section. Of course, in item-based
cases similarities are computed between the items without changing the formulas given in Equations 1 and
2. This section also contains results from a popularity-based recommender system - while this last type of
system is the most näıve, it is also very simple to implement and can be useful and powerful in certain cases.

Each of the methods described in this section is implemented in sparse format by adhering to the findings
in [Karypis, 2001]. We report accuracy and computational time in Table 8. Computational time includes
both finding similarities between items and evaluating each of the test cases. Sparse implementation is very
effective in terms of the computational time as seen from the results.

As indicated in [Sarwar et al., 2001], there are two steps involved in item-based algorithms:

• Similarity computations between items.

• Prediction.

The prediction step is slightly different in our implementation. As in [Sarwar et al., 2001], prediction
was based on a weighted sum. But, to find the overall similarity between the items in the active customer
profile and a given item, we used only the non-negative correlation coefficients and discarded the negative
correlations. Thus, normalization of the overall similarity was accomplished by dividing the number of non-
zero correlation coefficients between the active customer profile and a given item. For the cosine similarity
measure, no such change was needed, because these measures are between 0 and 1 for our datasets.

As the results in Table 8 indicate, item-based recommender systems are very efficient and robust in
terms of both scalability and prediction accuracy. Cosine based algorithms, especially, are superior to other
methods mentioned in this paper.

5 Future Work and Conclusion

A thorough comparison of several recommender systems is presented in this paper. Experimental studies on
both internal Verizon data and publicly available benchmark data were conducted using sparse binary data.
The results of the experiments indicate that simple methods recommend products very accurately when
compared to well-known recommender systems based on machine learning communities and dependency
networks introduced in [Breese et al., 1998, Heckerman et al., 2000]. We also proposed a new recommender
system, e-VZpro, that is based on association mining. Although the training time of e-VZpro is negligible
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and it has provided effective predictions (which were improved further by the use of clustering), the current
implementation does have the drawback of longer prediction times.

For modeling purposes, we used customer profiles without a time dimension. Incorporating the time
information (i.e. purchase or service order times), the problem becomes one of sequence mining. This
type of analysis may answer questions about what product/service the customer will purchase next and
recommender systems using the two-step method of e-VZpro can be constructed to easily perform sequence
mining. One important benefit of this type of recommender system is that it can be used to predict potential
service cancellations and offer retention incentives to those at-risk customers.

A successful recommender system should also consider and model the acceptance and the decline rates
of the products. At the beginning of the deployment of any recommender system such modeling perspective
would be problematic due to the unavailability of the historical acceptance and decline rates. Modeling
the acceptance and the decline rates will allow showing the different recommendations each time the cus-
tomer interacts with the system. Recommender systems should also avoid from the NULL predictions. Na
recommender systems such as the most frequent items should be used in this case.

A successful recommender system should also consider and model the acceptance and decline rates of
the offered products. While the lack of historical acceptance/decline rates for newly deployed recommender
systems can be problematic, modeling these rates will allow different recommendations to be presented to
the customer each time they interact with the system. NULL predictions should be avoided in recommender
systems; in these cases, a more näıve recommender system, such as a most frequent items system, should be
used.

The most important consideration when deploying a commercial recommender system lies in determining
the success metrics. Web-based recommender systems can track successes by measuring the clicks (conver-
gence rates) but recommender systems for e-commerce sites should also incorporate the click-stream data in
order to predict user needs and behavior to provide more accurate recommendations.
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Figure 1: Dependency Networks: (A)- WESTDB2, (B)- GENBUS
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Figure 2: Dependency Networks: MSWeb

Figure 3: A Sample Decision Tree from WESTDB2 Model
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